FITE

MODULAR ELECTRONIC

2rebay

^
DEVICES
TECHNICAL CATALOGUE

www.elkoep.com

Presentation of ELKO EP Company

ELKO EP, which is based in Holešov, has been with you on the electrical market for the past 20 years, covering a wide range of domestic equipments in the field of electrical installations. In the last few years there has been dynamic development of smart wiring, in which our company has been seven years developing and launching iNELS smart home system solutions. In modular devices, as well as in smart wiring, we have become market leaders. We're developing products that bring comfort to customers and safety for the environment.

The Parent ELKO EP company has gradually grown in 7 branches - Slovakia, Hungary, Poland, Russia, Ukraine, Romania and most recently Germany. At the same time we export to 60 countries around the world, and our products can be found under the world famous brand names (Schneider Electric, Eaton, HAGER, Siemens, MORS SMITT).

Our work is based on the development and modern technology. In practice, we appreciate you as our customers, because you're receiving good products and smart solutions, which meet your requirements. Our development facilities and precise production and distribution, all this gives you the opportunity to use solutions which are both innovative and practical. There are our modern manufacturing facilities to produce all our products. It was extended over the newest
 and fastest SMD line, which means for you guaranteed quality and flexibility of supply.

We have and supervise 80\% share of the Czech market and the fourth position in Europe.
Current-year sales growth: 20\%
Number of employees in Holešov: 170
Number of employees of ELKO EP Holding: 236
Awards and Recognition:
In 2011, the experts awarded the top products developed in ELKO EP: RF Touch - wireless touch control unit won a Golden Amper, Moravian Electrical and Electronic Association Award, Innovation Award of the year and PwC Special Award for Innovation. Also iNELS Multimedia - Multimedia control through television, won an award - honorable mention Grand Prix.

Providing the possibility for students in technical fields to do their thesis. In 2012, the company ELKO EP became THE Number ONE company in Zlín Region and in the national finals, we won second place.

Our range of products is divided into three product lines - relay (classical modular devices), RF Control (wireless), iNELS BUS system (Bus System). Each product line has its own technical catalogue, where you can find complete information on individual products.

Product Lines

RELAYS - Modular electronic devices

www.elkoep.com
A wide range of electronic modular devices, which bring new possibilities to home and office control, monitoring
and security, as well as to industrial process control: time relays, installation contactors, staircase automatic switches, time switches clocks, dimmers, thermostats, power supplies units, control and signalling devices, GSM gates, etc.

iNELS - Intelligent electro-installation System

www.inels.com
inELS
iNELS will transform your house into a timeless intelligent household. It will take charge of heating and air-conditioning regulation, lighting control and home appliance switching, while also providing perfect security for your home. Enjoy controlling your entire house via a TV screen thanks to iNELS Multimedia (iMM) or use the elegant iNELS Touch Panel (iTP).
iNELS RF Control - Wireless control
www.elkoep.com
inctis
A unique wireless control system providing you perfect control over your home! The RF Control system enables you to control functions such as heating, lighting, electrical appliances and window shutters, all with a single touch. No wall cutting, fast and easy installation, exclusive design of wireless wall switch buttons and other components.

iNELS system advantages

Advantages to classical electrical installation:

Comfort

- dimming function (gradual dim-up/dim-down, soft start, light scenes)
- control via touch-screen (built-in a wall) = complete information
- control via any remote controller (e.g. of your TV or stereo)
- control by voice (Sophy unit, listens to your voice commands)
- temperature regulation according to pre-set programs - in each
room individually
- possibility to control by mobile phone, computer and Internet

Automatization

- function is executed automatically on the basis of set value (time, temperature, light intensity, movement of people, wind strength...)
- it is possible to execute several functions on the basis of one command or event (e.g. when it is dark - INELS rolls shutters down, switches lights on, increases room temperature and switches TV on, and many others ...) - arrival/departure functions: after a code is entered (or a card read) to a keyboard, system automatically sets electrical appliances according to the identifi ed user.

Information

- system informs you about selected event/events by SMS text message - anywhere you are and if you have an access to Internet, you can connect to your house and supervise or change its state
integrated security system can be connected to a security agency

Security

- alarm with extended functions is a part of the system
- system is equipped by a keyboard which can be controlled by a code or by an access card
- all settings and accesses are subjects of passwords in several levels - protection of a house in case of bad weather (shutters in strong winds or storm), unexpected events (irregularities in power supply, overload), natural disasters (sensor for flooding, smoke sensor)
- bio-installation: deconnection of unused electric circuit (e.g. socket outlets in bedroom while sleeping)
setting ideal conditions for your children's sleep (gradual dimming off , pleasant temperature, motion monitoring = baby-sitting)
- touchable parts of sensors are supplied by a safe voltage 24V DC

Savings

- regulation of heating / cooling
- time or time-limited switching
- light regulation (possible energy savings up to 10\%)
dependant switching (e.g. when it is dark, for desired temperature etc...)
blocking of selected appliances in case of high meter readings elimination of unwillingly switched appliances (e.g. when there is no motion - light switches off)

Design

- modern design of the switches and sockets, thermostat, voice activity detectors - optional designes of Elegant or LOGUS90
variety to combine diff erent colours also in multiframe versions
touch panel screen - unique solution of elegant wireless home automation

Time for installation

- considerably lower thanks to bus installation (only 2 control wires) units are installed and later programmed

Flexibility of changes and extensions

- in future it is possible to add or change units easily
- functions can be changed by PC, also remotely through Internet

Available features for disabled people

- voice and remote control
- sound messages for blind (unit Sophy speaks pre-recorded messages) - several actions can be done by one command control by computer from one spot

Choose the right one!

Classic electro-installation

Electricity is a necessary companion to our everyday life and follows us almost wherever we go. Not only does it provide us with light or a means of cooking, but it also gets us around from point A to point B . Everybody knows where to find the home electric control panel and what to do when the power goes out. We make all the devices that go into such control panels and switchboards, and have been selling them for almost 20 years.

Our assortment includes all modular electronic devices (time relays, installation contactors, staircase switches, timers, dimmers, themostats, power sources, control and signaling devices). Thanks to experience, we stand on solid foundations, and we are responsibly developing wide-ranging additions in the form of higher levels of electrical installations - either wireless or intelligent (bus-based).

Energy savings:

Choose the right one!

| PRICE | |
| :---: | :--- | :---: |
| OF INSTALLATION | |
| | Control using the TV -
 Tablet -
 PC / Laptop -
 Music playback -
 Video cameras -
 Weather station -
 Door communicator -
 Controlling home appliances -
 Touch panel -
 Control via Smartphone -
 Detectors -
 Wireless switch -
 Heating regulation -
 Controlling blinds -
 Dimming lights
 Controlling appliances \bullet |

Wireless electrical installations

Most of you have already built a house or furnished an apartment. If you want to bring life into your home, we have an elegant wireless solution. As the name implies, the wireless communication is working with a range of up to 200 m (it depends on the internal structure of the house/apartment, and the used building materials.

The central brain is in this case the touch RF Touch unit, which can be placed anywhere within the range. It's possible not only to program entire system from this unit, but also to control it. Brightly replaces several thermostats and controllers. Within the system, you have an unlimited opportunity to add any drivers and placing them at the suitable places.

Energy savings: D B B

Bus electrical installations

Are you building a new home? Then you should consider a bus-based solution. A bus in this sense is a data conductor that is distributed in the walls across the entire home. As opposed to a wireless solution, its advantage is range, because up to $6 \times 550 \mathrm{~m}$ buses can be distributed in a single building.
Connection to a computer expands the scope of its available functions. This system may be expanded to include multimedia extensions and can connect third party devices (household appliances, A / C, etc.). Control and monitoring the system can be performed via PC, the Internet, telephone, tablet, etc.

The system offers a wider range of functions that can be applied. A computer is used to set the parameters.

Energy savings:

iNELS smart home solutions

iחеம
 BUS System

10 reasons to choose bus system

1）Ideal solution for new buildings
2）Two－wire bus

3）Bus once stretched you can always expand
4）Security system，combined with detectors
5）Remote control（PC，mobile phone applications）
6）Imitation of presence
7）Regulation depending on the weather
8）Ecology and energy saving
9）Modern trends in controling
10）Media under control（can also be controlled via TV）

ineじ
 RF Control

10 reasons to choose wireless system

1）Do you know that heating regulations save up to 30% from the energy costs
2）Without any reconstruction work

3）The fast duration for electrical installations＇s implementation
4）Convenient and affordable prices for everyone
5）The possibility of upgrading your system－gradually upgrade your installations
6）Battery－powered transmitters－no electrical injury
7）The variability of the features that you can change
8）The design，which inspires you
9）Professional assembly and service of our partners
10）We are the Czech company，which top priority is customer＇s satisfaction

House switches and sockets LロGUS

BASE

$\stackrel{\text { Plastic }}{ }$

ANIMATO

Design ranges

BASE－Simplicity is the sign of beauty．Precise and convenient shapes，distinctive colours embodied in switches．

AQUARELLA－Spacetime without limits．Metallic design will draw you into the world of exclusive design．

Animato－Wide range of colors，modern design and nice price．

CRYSTAL－Endless elegance of glass．Switches underlining the dynamics of your interior．

METALLO－Be exceptional！Nobility of metal will inspire you with unforgettable moments．

ARBORE－The Nature at your fingertips．Warm tones of wood create an atmosphere of absolute bliss．

PETRA－Feel free to experiment．Stone is a symbol of stability，strength and power．Enjoy the switches you can lean on．

Catalogue content

Modular electronic devices

Time relays
Time relays review 8-9
Single-function time relay CRM-81J, CRM-83J 10
Delay OFF without supply voltage CRM-82TO 11
Doublestage delay unit SJR-2 12
Delay ON star/delta CRM-2T 13
Asymmetric cycler CRM-2H 14
Multifunction time relays
CRM-61 15
CRM-91H, CRM-93H, CRM-9S 16-17
CRM-91HE, CRM-2HE - with external potentiometer 18
PLUG-IN - PRM-91H/11, PRM-91H/8, PRM-92H, PRM-2H 19
Programmable digital relay PDR-2/A, PDR-2/B 20-21
Digital time switch SHT 22
Timer with an astronomical program SHT-4 23
Time switch SHT-6 with DCF managing 24
DCFR-1 receiver DCF 77 25
Super-multifunction relay SMR-K, SMR-T, SMR-H, SMR-B 26-27
Staircase switch CRM-4 28
Staircase switch CRM-42 with signalling before switching off, CRM-42F 29
Power and auxiliary relays
Power and auxiliary relays review 31
Modular VS116K, VS308K, VS316/24,VS316/230, VS116U, VS308U 32-33
Plug-in
782L,750L 34-35
Dimmers
Overview of dimmers 36
Staircase switch with dimming DIM-2 37
Controlled dimmer
DIM-5 38
DIM-14 39
DIM-6 40
DIM-6-3M-P 41
DIM-15, SMR-M 42-43
SMR-S, SMR-U 44
LIC-1 45
Power supplies
Power supplies review 46-47
Line DR 48-49
Line PS 50
Power supplies ZSR-30, ZNP-10 51
Bell transformer ZTR 52
Other modular devices 53
Twilight switch SOU-1 54
Twilight switch with digital time switch SOU-2 innovation! 55
Twilight and light switch SOU-3 56
Memory relay MR-41, MR-42 57
Controlling and signalling units USS 58
Monitoring relays
Monitoring relays review 59-60
HRN-41/42 61
HRN-3x, HRN-6x 62-63
Relay for monitoring phase sequence and failure HRN-55, HRN-55N 64
Relay for monitoring over/undervoltage and phase failure HRN-57, HRN-57N 65
Relay for monitoring over/under voltage, phase sequence and failure HRN-54, HRN-54N 66
Relay for monitoring phase sequence and failure HRN-56 (120, 208, 240, 400, 480, 575) 67
Relay monitoring 3-phase mains HRN-43, HRN-43N 68-69
Optical signaling of three-phase network MPS-1 70

Modular electronic devices

Monitoring relays
Monitoring current relays
PRI-32 71
PRI-51 72
PRI-52 73
PRI-53 74
PRI-41, PRI-42 75
Current transformer SR for monitoring current relays PRI (accessories) 76
Level monitoring level
Level monitoring relays HRH-1 77
Level monitoring relays HRH-5 78-79
Level monitoring relays HRH-4 80-81
Level monitoring relays HRH-6 82
Level sensors to level switches SHR-1M, SHR-1N, SHR-2, SHR-3 (accessories) 83
Relay monitoring
COS-1 84
HRF-10 85
Thermostats
Thermostats review 86-87
Analog and digital thermostats
Modular thermostat TER-3 (A, B, C, D, G, H) 88
Modular thermostat TER-3 (E, F) 89
Modular 2-stage thermostat TER-4 90
Modular thermostat for controling temperature of motor winding TER-7 91
Modular multifunction digital thermostat TER-9 92-93
Thermo - ATR, ATF, ATO 94
Thermo - DTR, DTF, DTC 95
Energy-saving digital radiator thermostat ATV-1 96
Single-level thermostat with IP65 TEV-2, TEV-3 97
Two-level thermostat with IP65 TEV- 98
Outdoor thermostat TEV-4 99
Humidistat RHT-1 100
Outdoor humidistat RHV-1 101
Accessories
Thermal sensors to thermostats TC, TZ, PT-100 102
Installation contactors 103
Installation contactors and installation contactors with manual control 104-105VS120, VS220, VS420, VS425, VS440, VS463
VSM220, VSM425 106
Loadability of installation contactors 107
EAN codes 108
Technical information 109
Main instructions (for correct use of products) 110
Product loadability 111-112
Electromagnetic compatibility of products 113
EMC chart 114
Overview of tested types of light sources and the loads 115
Products packing 116
Dimensions 117-121
Examples of usage 122-129
Support of project design 133
Production technology 134-135

Single-function

	Type							$\left.\right\|_{0} ^{\circ}$	$\begin{aligned} & 2 \\ & \hline 0 \\ & \hline \end{aligned}$										$\xrightarrow{\substack{2}}$	－			䎟	\sim	줓		젤
	1－MODULE	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－									
	2－MODULE																				－	－	－	－			
	3－MODULE																		\bullet	－							
	PLUG－IN																								－	－	\bullet
	Under the switch				chart	t2V	Versio	－	mou	untin	ng in	to in	instal	Ilation	box	（KU6											
	Rotary switch	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	\bullet	－							－	－	\bullet
는	Button																		\bullet	－	－	－	－	－			
合	Sliding switch															\bullet	－										
	External potentiometer										\bullet	－															
	Delay OFF after switch off the Input supply							\bullet	－																		
	Delay ON	－			\bullet			－	\bullet	－	\cdots		\bullet					－	－	－					－	－	
	Delay OFF		－	－		－	－		－	－	－		－						－	－					－	－	
	Symmetrical cycler starting with delay								－	－	－		\bullet						－	－					－	－	
	Delay OFF after impulse OFF			－			－		－	－	－		\bullet						\bullet	－					－	－	
	Symmetrical cycler starting with impulse								－	－	－		－						\bullet	－					－	－	
	Staircase switch								－	－	－		－			\bullet	－		\bullet	\bullet					－	－	
	Impulse shift								\bullet	－	－		－						－	－					－	－	
	Memory（impulse）relay								－	－	－		－												－	－	
	Impulse generator								\bullet	－	\bullet		－						\bullet						－	－	
	Delay ON at switch on controlling contact																		－	－							
	Asymmetric cycler starting with delay											\bullet		\bullet					\bullet								\bullet
	Asymmetric cycler starting with impulse											\bullet		\bullet					\bullet								－
	Delay ON star／delta														\bullet				\bullet								
	Switching in real time																				－	－	－	－			
	Impuls relay in delay ON																										
	0．1－15	－	－	－	－	－	\cdots	－	－	－	\cdots	－	－	－	\bullet			－							－	－	\bullet
	1－10s	\bullet	－	－	－	－	－	－	－	－	－	－	－	－	\bullet			\bullet							－	－	\bullet
	0．1－1 min	－	－	－	－	－	－	－	－	－	－	－	－	－	\bullet			－							－	－	\bullet
	1－10 min	－	－	－	－	－	－	－	－	－	－	－	－	－	－			－							－	－	\bullet
	$0.1-1 \mathrm{hrs}$	－	－	－	－	－	－		－	－	－	－	－	－	－			\bullet							－	－	－
	1－10 hrs	－	\bullet	－	－	\bullet	－		\bullet	－	\cdots	－	－	\cdots	\bullet			\bullet							－	－	\bullet
	0．1－1 day								\bullet	－	－	－	－	－	－			\bullet							－	－	\bullet
	1－10 days								\bullet	－	－	－	－	－	－			－							－	－	\bullet
	3－30 days											\bullet	－	\bullet	－												\bullet
	10－100 days											－	－	－	－												\bullet
	$30 \mathrm{~s}-10 \mathrm{~min}$															－	－										
	99 h 59 min 59 s																		\bullet	－							
	Day																				－	－	－	－			
	Week																				－	\bullet		\bullet			
	Month																					\bullet		－			
	Year																					－	－	\bullet			
	230 VAC	\bullet	\cdots	\bullet	\bullet	\bullet	\bullet		－		－			\bullet	－	\bullet	－	－	－	－	－	－	\bullet	\bullet			
	12－240 V AC／DC	－	－	－	－	－	－	－	－	－	－	－	－	－				－	－	－	－	－		－	－	－	\bullet
	12－240VAC												－														
$\begin{aligned} & \text { 늘 } \\ & \text { 合 } \end{aligned}$	1x changeover／SPDT 8A																							\bullet			
	1x changeover／SPDT 16A	－	－	－					－		－		－	\bullet		\bullet					－	－	\bullet		\bullet		
	2 x changeover 8 A							\bullet	－																	－	\bullet
	2 x changeover 16A														\bullet			－	－	－	\bigcirc	O					
	3 x changeover／3PDT 8 A				－	－	－				－																
	Static output（triac）												－														
	1x N0 16A																\bullet										

Chart 2．Version－mounting into installation box（KU68）

- Single-function and single-time relay with possibility of fine time setting by a potentiometer (within the frames of a particular time range)
- Suitable for applications where function and time requirements are known
- Time switch, possible to be used for pump decay time after switching heating off, switching of fans
- Choice of 3 functions:

1) ZR - Delay ON
2) ZN -Delay OFF
3) BL - Repeat Cycle

- Functions can be controlled by supply voltage or time scale control input.:
($0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 6 \mathrm{~s}-60 \mathrm{~s} / 1 \mathrm{~min}-10 \mathrm{~min} / 6 \mathrm{~min}-60 \mathrm{~min} / 1 \mathrm{~h}-10 \mathrm{hrs}$)
- Universal voltage range AC/DC $12-240 \mathrm{~V}$
- Output contact: CRM-81J: 1x changeover/ SPDT 16 A

CRM-83J: $3 x$ changeover/ 3PDT 8 A

- Red LED output indicator
- 1-MODULE, DIN rail mounting

CRM-83J by type

Technical parameters	(RM-81J	(RM-83J
Functions:	ZR - delay ON / ZN - delay OFF/ BL- cycler 1:1	
Supply terminals:	A1-A2	
Voltage range: $\quad \overline{\text { l }}$	AC/DC $12-240 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$	
Burden:	AC0.7-3VA / DC $0.5-1.7 \mathrm{~W}$	
Voltage range:	AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$	
Consumption (apparent/loss): \sim	AC max. $12 \mathrm{VA} / 1.3 \mathrm{~W}$	AC max. 12 VA/1.9 W
Supply voltage tolerance:	$-15 \% ;+10 \%$	
Supply indication:	green LED	
Time ranges:	$0.1 \mathrm{~s}-10 \mathrm{~h}$ (in 6 alternate)	
Time setting:	potentiometer	
Time deviation:	5% - mechanical setting	
Repeat accuracy:	0.2% - set value stability	
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}$, at $=20^{\circ} \mathrm{C}$	
Output		
Number of contacts:	1x changeover/ SPDT (AgNi / Silver Alloy)	3 x changeover/ SPDT (AgNi / Silver Alloy)
Current rating:	16 A/ AC1	8A/AC1
Breaking capacity:	$4000 \mathrm{VA} / \mathrm{AC} 1,384 \mathrm{~W} / \mathrm{DC}$	$2000 \mathrm{VA} / \mathrm{AC1}, 192 \mathrm{~W} / \mathrm{DC}$
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$	$10 \mathrm{~A} /<3 \mathrm{~s}$
Switching voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$	
Min. breaking capacity DC:	500 mW	
Output indication:	red LED	
Mechanical life:	3×10^{7}	
Electrical life (AC1):	0.7×10^{5}	

Control

Consumption of input:
Load between S-AZ:
Control terminals:
Glow tubes connetions:
Max. amount of glow lamps
connected to controlling input:
Impulse length:
Reset time:
Other information

Power of control input:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Electrical strength:	4 kV (supply-output)
Mounting/DIN rail:	DIN rail EN 60715
Protection degree:	IP 40 from front panel / IP20 terminals
Operating position:	any
Overvoltage cathegory:	III.
Pollution degree:	2
Max. cable size(mm^{2}):	solid wire max. 1×2.5 or 2×1.5 / with sleeve max. 1×2.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.55^{\prime \prime}\right)$
Weight:	(UNI) $-62 \mathrm{~g},(230)-60 \mathrm{~g}$ (UNI) $-86 \mathrm{~g},(230)-82 \mathrm{~g}$
Standards:	EN 61812-1, EN 61010-1

Symbol
Connection
(RM-81J

Example of an order

CRM-81J/230,ZR10s
$1 x$ changeover contact, voltage AC 230 V , function: delay 0 N , time $1-10 \mathrm{~s}$
CRM-83J/UNI, BL1h
$3 x$ changeover contact, voltage AC/DC $12-240 \mathrm{~V}$, function: cycler begin with impulse, time 6-60 min

Functions

ZR - Delay ON

ZN - Delay OFF

U					
S				$\\| \square$	
	t		t		

BL - Cycler 1:1

U	
S	
\square	$t+t+1$

Note: the function ZR and ZN is controlled by supply voltage and control input ie. when it comes to failure and refreshing the supply voltage, the relay automatically makes one cycle.

Time range

	1 s	10 s	1 min	10 min	1 hr	10 hrs
\min	0.1 s	1 s	6 s	1 min	6 min	1 hr
\max	1 s	10 s	60 s	10 min	60 min	10 hrs

Description

EAN code
CRM-82TO /UNI: 8595188137614

- For gradual switching of heavy powers (e.g. el.heating), prevents current strokes in the main
- Function: $2 x$ Delay ON (2 time relays in one)
- Time scale $0.1 \mathrm{~s}-10$ days divided into 10 time ranges:
$0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 0.1 \mathrm{~min}-1 \mathrm{~min} / 1 \mathrm{~min}-10 \min / 0.1 \mathrm{~h}-1 \mathrm{~h} / 1 \mathrm{~h}-10 \mathrm{hrs} / 0.1$ day -1 day $/ 1$ day -10 days / ON / OFF
- Times t 1 and t 2 are independantly adjustable
- t 1 and t 2 are switched on after supply voltage connection
- Rought time setting via rotary switch
- Voltage range: AC 230 V or AC/DC $12-240 \mathrm{~V}$
- Output contact: 2 x changeover /DPDT 16 A
- Output indication: multifunction red LED, flashing at certain states
- 1-MODULE, DIN rail mounting

Time ranges

CRM-2T/UNI: 8595188112437

- It serves for delay ON of motors star/delta
- Time t1 (star) - time scale 0.1 s - 100 days devided into 10 time ranges
- rough time setting by rotary switch
- Time t2 (delay) between N/ Δ
-time scale 0.1 s - 1 s
- fine time setting by potentiometer
- Voltage range: AC $230 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 12-240 \mathrm{~V}$
- Output contact: $2 x$ changeover/ DPDT 16A
- Output indication: multifunction red LED
- 1-MODULE, DIN rail mounting

Asymmetric cycler CRM-2H

- Multifunction time relay (6 functions and 6 time ranges), economic version of CRM-91H
- To be used for electrical appliances, control of lights, heating, motors, pumps, fans, etc.
- 6 functions: - 3 time functions controlled by supply voltage
-3 time functions controlled by control input
- Easy to use function and time-range setting by rotary switches
- Time scale $0.1 \mathrm{~s}-10$ hrs divided into 6 range:
($0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 0.1 \mathrm{~min}-1 \mathrm{~min} / 1 \mathrm{~min}-10 \mathrm{~min} / 0.1 \mathrm{hrs}-1 \mathrm{hrs} / 1 \mathrm{hrs}-10 \mathrm{hrs}$)
- Universal Voltage range: AC 24-240 V, DC 24 V
- Output contact: 1x changeover 8 A/ SPDT
- Multifunction red LED output indicator flashes or shines depending of status
- 1-MODULE, DIN rail mounting
CRM-61/UNI: 8595188120210

Operating position	any
Mounting/DIN rail:	DIN rail EN 60715
Protection degree:	IP 40 from front panel $/$ IP 10 terminals
Overvoltage cathegory:	III.
Pollution degree:	2
Max. cable size $\left(\mathrm{mm}^{2}\right):$	max. $2 \times 2.5, \max .1 \times 4$ (AWG 12)
	with sleeve max. $1 \times 2.5,2 \times 1.5 \mathrm{~mm}^{2}$ (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$
Weight:	$69 \mathrm{~g}(2.4 \mathrm{oz})$.
Standards:	EN $61812-1$, EN $61010-1$

Function

On Delay (Power On)
When the input voltage U is applied, timing delay t begins. Relay contacts R change state after time delay is complete Contacts R return to their shelf state when input voltage U is removed. Trigger switch is no used in this function.

Interval (Power On)
When input voltage U is applied, relay contacts R change state immediately and timing cycle begins. When time delay is complete, contacts return to shelf state. When input voltage U is removed, contacts will also return to their shelfstate. Trigger switch is not used in this function.

Repeat Cycle (Starting Off)
When input voltage U is applied, time delay t begins. When time delay t is complete, relay contacts R change state for time delay t. This cycle will repeat until input voltage U is removed. Trigger switch is not used in this function.

Repeat Cycle (Starting On)
When input voltage U is applied, relay contacts R change state immediately and time delay t begins. When time delay t is complete, contacts return to their shelf state for time delay t. This cycle will repeat until input voltage U is removed. Trigger switch is not used in this function.

Off Delay (S Break)
Input voltage U must be applied continuously. When trigger switch S is closed, relay contacts R change state. When trigger switch S is opened, delay t begins. When delay t is complete, contacts R return to their shelf state If trigger switch S is closed before time delay t is complete, then time is reset. When trigger switch S is opened, the delay begins again, and relay contacts R remain in their energized state. If input voltage U is removed, relay contacts R return to their shelf state.

Single Shot
Upon application of input voltage U, the relay is ready to accept trigger signal S. Upon application of the trigger signal S, the relay contacts R transfer and the preset timet tegins. During time-out, the trigger signal 5 is ignored. The the preset time beginin. Durng ime-out, the trigger signal sisignored.

Single Shot Trailing Edge (Non-Retriggerable)
Upon application of input voltage U, the relay is ready to accept trigger signal S. Upon taplication of the trigger signal S, the relay contacts R transfer and the preset timet begins. At the end of the presest time t, the relay contacts R return to their normal condition unless the trigger switch S is opened and closed prior to
time outt (before preset time elapses). Continuous cyding of the trigger switch S at a rate faster than the preset times will cause the relay contacts R to remain dosed. If input voltage U is removed, relay contacts R return to their shelf state

On/Off Delay
Input voltage U must be applied continuously. When trigger switch S is closed, time delay t begins. When time delay tis complete, relay contacts Cosed, time detay tbegins. When time delay tis complete, elay contacts If input voltage U is removed, relay contacts R return to their shelf state.

Latching relay

Input voltage U must be applied continuously. Output changes state with every trigger switch S closure. If input voltage U is removed, relay contacts R return to their shelf state.

Pulse generator
Upon application of input voltage U , a single output pulse of 0.5 seconds is delivered to relay after time delay t. Power must be removed and reapplied to repeat pulse. Trigger switch is not used in this function.

$$
\mathrm{f}
$$

\qquad

h

i
S

g
\square

Time ranges

$0.1-1 \mathrm{~s}$

0.1-1 min

$1-10 \mathrm{~min}$

only ON

Description

Notes

1) CRM-93H doesn't allow switching of different phases or 3-phase voltages.
2) When mounting into steal-plated switchboards, it is necessary keep safety distance of min. 3 mm from terminal's screws $35-36-38$ and $25-26-28$ towards the shutter of a switchboard.

- Control by external control unit - potentiometer (can be for example on switch board doors or in panel)
- CRM-91HE: multifunction time relays

10 functions - 5 time functions controlled by supply voltage
-4 time functions controlled by control input

- 1 function of latching relay
time scale $0.1 \mathrm{~s}-10$ days divided into 10 ranges
($0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 0.1 \mathrm{~min}-1 \mathrm{~min} / 1 \mathrm{~min}-10 \mathrm{~min} / 0.1 \mathrm{hrs}-1 \mathrm{hrs} / 1 \mathrm{hrs}-10 \mathrm{hrs} / 0.1$ day -1 day /
1 day - 10 days / only ON / only OFF)
- CRM-2HE: asymmetric cycler

2 time functions - cycler beginning with pulse

- cycler beginning with gap
function selected via external wired link on control input S-A1
- CRM-91HE, CRM-2HE:
- Universal supply voltage AC/DC 12-240 V
- Output contact: 1x changeover 16 A/SPDT
- 1-MODULE, DIN rail mounting
- Possible to connect external potentiometer - max. distance 10 m (32.8 ft .) from relay

Technical parameters	CRM-91HE	CRM-2HE
Number of functions:	10	2
Supply terminals:	A1-A2	
Voltage range:	AC/DC $12-240 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$	
Burden:	AC 0.7-3 VA / DC $0.5-1.7 \mathrm{~W}$	
Supply voltage tolerance:	-15\%; +10\%	
Supply indication:	green LED	
Time ranges:	0.1 s-10 days	s-100 days

Symbol

CRM-91HE, CRM-2HE Potentiometer to CRM-91HE, CRM-2HE

*B4 only for CRM-2HE

Connection

Description

CRM-91HE

Potentiometer

Potentiometer:	$47 \mathrm{k} \Omega$, linear
Protection degree:	IP 65 from front side/ IP 20 from back side
Max. cable size $\left(\mathrm{mm}^{2}\right):$	$1.5 \mathrm{~mm}^{2}$ with sleeve $/$ without sleeve max.2.5 (AWG 12)
Weight:	$15 \mathrm{~g}(0.5$ oz.)
Dimensions:	see page Accessories

Time ranges of PRM-91H, PRM-92H are identical with CRM-91H.
Time ranges of PRM-2H are identical with CRM-2H. See page 17.

- Multifunction time relays are equivalents by module types of relay, designed to standardized plump 11 or 8pin socket
- Pin type enables easy changing, replacement older type of relays (pin-compatible) or easy changing auxiliary relay for time relays
- Multifunction time relay PRM-91H
11 and 8 pin type
10 time functions, time scale from 0.1 s to 10 days is divided into 10 ranges output contact 1x 16A / 4000VA, 250 V AC1
- Multifunction time relay PRM-92H
11 pin type
10 time functions, time scale from 0,1 s to 10 days is divided into 10 ranges output contact 2×8 A / 2000VA, 250 V AC1
- Asymmetric cycler PRM-2H
11 pin type
2 time functions, time scale from $0,1 \mathrm{~s}$ to 100 days is divided into 10 ranges output contact 2×8 A / 2000VA, 250 V AC1
- Universal supply voltage $A C / D C 12-240 \mathrm{~V}$
- Output indication: multif. red LED, flashing at certain states
- PLUG-IN relays

Technical Parameters	PRM-91H/8	PRM-91H/11	PRM-92H	PRM-2H
Number of functions:		10		2
Supply:	pins 2 and 7	pins 2 and 10	pins 2 and 10	pins 2 and 10

| Voltage range: | AC/DC $12-240 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$ | |
| :--- | :---: | :---: | :---: |
| Burden: | $\mathrm{AC} 0.7-3 \mathrm{VA} / \mathrm{DC} 0.5-1.7 \mathrm{~W}$ | |
| Supply voltage tolerance: | $-15 \% ;+10 \%$ | |
| Supply indication: | green LED | |
| Time ranges: | $0.1 \mathrm{~s}-10$ days | $0.1 \mathrm{~s}-100$ days |
| Time setting: | rotaty switch and potentiometer | |
| Time deviation: | 5% - mechanical setting | |

Repeat accuracy:

Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}$, at $=20^{\circ} \mathrm{C}\left(0.01 \% /{ }^{\circ} \mathrm{F}\right.$, at $\left.=68{ }^{\circ} \mathrm{F}\right)$	
Output		
Number of contacts:	1x changeover/ SPDT (AgNi / Silver Alloy)	2x changeover/ DPDT (AgNi / Silver Alloy)
Current rating:	16 A/ AC1	8A/ AC1
Breaking capacity:	$4000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$	2000 VA / AC1, $192 \mathrm{~W} / \mathrm{DC}$
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$	$10 \mathrm{~A} /<3 \mathrm{~s}$
Switching voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$	
Min. breaking capacity DC:	500 mW	
Output indication:	multifunction red LED	
Mechanical life:	3×10^{7}	
Electrical life (AC1):	0.7×10^{5}	

Connection

Description / Connection

Functions PRM-2H

Choice Function in PRM-2H is done by connecting terminals 2 and 5

Cycler beginning with pause

PRM-92H, PRM-2H

Recommended socket for DIN rail

ES-8

[^0]
Programmable digital relay PDR-2/A, PDR-2/B

Recommendation:
PDR-2/B is replacing by 2 simple time relays $=2$ in one.

- This time switch clock SHT is used to control various appliances in real time; daily, weekly, monthly and annual mode
- Switching: according the program (AUTO)/constantly manually, manually to next program change/random (CUBE)
- "Holiday program" option to choose an interval when the device
 doesn't switch according to the standard program, but will be block during that time
- Automatic conversion summer / winter time
- Sealable cover of front panel, easy controlling via 4 buttons
- 100 memory places, clear LCD display, min. interval 1 s
- Voltage range: AC 230 V or $\mathrm{AC} / \mathrm{DC} 12-240 \mathrm{~V}$
- Cyclic output
- Pulse output
- SHT-1, SHT-3: one channel version, 2-MODULE, DIN rail mounting, clamp terminals
- SHT-1/2, SHT-3/2: two channel version, 2-MODULE, an individual program can be run on each channel SHT-3/2/UN: $\quad 8595188129046$
Technical parameters

SHT-1, SHT- 3	SHT-1/2, SHT-3/2
A1-A2	
AC/DC 12-240V (AC $50-60 \mathrm{~Hz}$)	
AC $0.5-2 \mathrm{VA} / \mathrm{DC} 0.4-2 \mathrm{~W}$	
AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$	
AC max. $14 \mathrm{VA} / 2 \mathrm{~W}$	
-15\%; +10\%	

Symbol

SHT-1
SHT-3

SHT-1/2

Connection
SHT-1

SHT-1/2 SHT-3/2

Description of displayed elements on the screen

Description

EAN code
SHT-4 8595188144759

- Used for controlling the lighting (billboards, advertisements, shop windows, etc.) with no light sensor required
- Function:
- by entering the geographic coordinates, the lighting can be switched on/off by sunrise and sunset
- the preset coordinates for European cities, with optional manual adjustment of the geographical coordinates
- during programming, 120 minutes may be added to the time of sunrise and sunset
- selection of ON/OFF functions at sunrise or sunset
- astro-clock with adjustable interruption
- operating hours counter for each channel
- timer - switching on the basis of real-time
- Two-channel design, where each channel is programmable independently of the other
- Automatic switching between winter and summer time
- Sealable transparent cover on the front panel
- Data and time backup using the battery
- Battery life - up to 3 years
- Easy replacement of the backup battery through the plug-in module, no disassembling is required
- Supply voltage: AC 230 V
- 2-MODULE, DIN rail mounting

SHT-6 8595188148382
DCFR-1 8595188148412

Technical parameters	SHT-6
Terminals Supply	A1-A2
Voltage Supply:	AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
Tolerance of voltage supply:	$-15 \% ;+10 \%$
Output	
Number of contacts:	$1 \times$ changeover (AgSn$\left.)_{2}\right)$
Rated current:	$16 \mathrm{~A} / \mathrm{AC1}$
Switching capacity:	$4000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$
Peak current:	$30 \mathrm{~A} /<3 \mathrm{~s}$

Max. switching voltage:	$250 \mathrm{~V} \mathrm{AC1/24V} \mathrm{DC}$
Minimum switching capacity DC:	500 mW
Mechanical life:	$>3 \times 10^{7}$
Electrical life (AC1):	$>0.7 \times 10^{5}$

Time circuit
Backup real. time:
Running accuracy:
Without DCF receiver
Minimum switching interva:
Data retention programs:
Program circuit
Number of memory locations:
Program:
Displayed data:
Other information
Working temperature:
Storage temperature:
Dielectric strength:
Operating position:
Mounting:
Protection:
Over voltage category:
Degree of pollution:
Cable size (mm^{2})
Dimension:
Weight:
Related standards
Plug-in module
Wi812-1, EN 61010-1
With battery
Type of backup battery:

- Used for controlling appliances depending on real time, that is synchronized by a DCF 77 signal, thanks to the automatic time settings (with DCF 77 signal) it eliminates inaccuracies and errors by time running
- 1 channel design with external DCF receiver
- Automatic switching between winter/summer time
- Sealable cover of the front panel
- 100 memory locations
- Backlit LCD display
- Switching according to the program: auto / manual / random / holiday program
- Backing up data and time using the battery
- Reserve battery for up to 3 years
- Easy replacement for the backup battery with plugging module without detaching the device
- Power supply: AC 230V
- 2-MODULE, mounting on DIN rail

Symbol

Description of the displayed elements on the screen

Description

Time ranges

Function

Function a - delay OFF on entrering edge
output times when it is switched. Each following pressing (max. 5x) increases time. Long pressing swithes output off

Function b - delay OFF on downward edge output times after button is swithed off, switches immediately

Function c- delay OFF on downward edge
after switching off output switches on and times.

Function d - cycler - flasher impulsem
output cycles in regular interval, cycler starts with an impulse

Function e - puls shift
delay on after the switch is switched on and delay on after it is switched off

Function f - delay ON
delay on after switch is switched on until it is switched off
Function g-impulse relay
switches on by a press, another pressing switches the output off. The length of pressing doesn't matter, it is possible to set reaction delay by a potentiometer and thus eliminate rebound of a button

Function h - impulse relay with delay
one press switches on, another one switches the output off in case it is done before the end of timing

Function i- cycler starting with pause
output cycles in regular intervals, cycler starts with a pause

Function ${ }^{*}$ - cycler starting with gap
delay ON until switched off until it is de-energized or a switch is pressed again.
Note.: *- Function j is valid only for SMR-B

Connection SMR-K, SMR-T, SMR-H, SMR-B

Fan control depending on the lighting

Input for external control voltage AC/ DC5-250V

Note: The products of the SMR-K, SMR-T, SMR-H are not intended for switching capacity load (energy saving light bulbs and LED lights with capacity power etc.), these products are only intended for switching resistive and inductive loads (incandescent bulbs, fans, etc.). For other types of traffic is determined by the SMR-B with relays output. This output is possible to switch the load character of R, L or C-values listed in the load table. Between inputs S and neutral wire is possible to connect any load of R, L or C, however this is not (unlike the SMR-K) condition.

Example of connection SMR-T

Technical parameters

Function:

Supply terminals:
Burden:
Supply voltage tolerance:

Supply indication
Time ranges:
Time setting:

Time setting:
Time deviation:
Repeat accuracy:
Temperature coefficient:

Output

Number of contacts:
Breaking capacity:
Inrush current:
Switching voltage:
Min. breaking capacity DC:
Output indication:
Mechanical life:
Electrical life (AC1):
Control

Control voltage:	AC230 V
Power on input:	AC 0.53 VA
Load between S-A2:	Yes
Control terminals:	A1-S
Glow tubes connetions:	Yes

Glow tubes connetions:
Max. amount of glow lamps
connected to controlling input:
Impulse length:
Reset time:
Other information
Operating temperature:
Storage temperature:
Electrical strength:
Operating position:
Mounting/DIN rail:
Protection degree:
Overvoltage cathegory:
Pollution degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:
Standards:

AC 230V - max. amount 35 pcs
(Measured with glow lamp $0.68 \mathrm{~mA} / 230 \mathrm{~V} \mathrm{AC}$)

min. $25 \mathrm{~ms} /$ max. unlimited
max. 150 ms
$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
4 kV (supply - output)
any
DIN rail EN 60715
IP 40 from front panel / IP 20 terminals
III.
2

solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)
$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$
62 g (2.2 oz.)
EN 60669-2-3, EN 61010-1 om, etc.)

RM-4

Function

- Used for delayed switching of lights in the corridors, entrances, stairways, halls or for delayed finish of fans (WC, bathro-
- It is controlled by a button or by several buttons from more places (connected in parallel) buttons can be equipped by glow lamps (max. 20 pcs of glow lamps)
- Output relay contact $16 \mathrm{~A} / \mathrm{AC1}$ with surge current up to 80 A enables switching of el. bulbs and fluorescent lamps
- Operating system switch:

AUTO - normal Function according to set time
OFF - permanently OFF (e.g. when changing bulbs)
ON - permanently ON (e.g. while cleaning, servicing)

- Time range: 0.5-10 min
- Time setting by potentiometer
- Supply voltage : AC 230 V
- Protection against button blocking (e.g. a match inserted in a button)
- 1-MODULE, DIN rail mounting

Symbol

Connection

It is possible to connect load between S-A2 (e.g. contactor, control of light or any other device), without disturbing a correct function of relay (load is energized while the switch is ON).

Circuit connection

Description

- Intelligent staircase switch, the same use as CRM-4, but with enlarged possibility of control in mode, „PROG", it is possible to select time of delayed OFF by number of button pressing. Each pressing multiplies time set by potentiometer, it means that in case you set time to 5 min and press the button 3 times, then the output is automatically prolonged to 15 min . Output can be also switched off before time (reset) by long pressing of button (longer than 2 sec)
- Output relay contact $16 \mathrm{~A} / \mathrm{AC} 1$ with inrush current up to 80 A enables switching of el. bulbs and also fluorescent lights
- Operating system switch:

ON - output is constantly ON (service mode)
AUTO-timing according to adjusting by potentiometer in range $30 \mathrm{~s}-10 \mathrm{~min}$
PROG - timing with time prolongation option by number button pressing

- Timing (in mode AUTO and PROG) is possible to be stopped by long pressing of the button (> 2 s)
- Voltage range: AC 230 V , clamp terminals
- Output indication: multif. red LED, flashing at certain states
- Possibility to connect up to 100 buttons equipped with glow lamps (in total 100 mA)
- 3-wire or 4 -wire connection (it is possible to control input S by potential A1 or A2)
- Warning before switch OFF- output doubleflash 40 and 30 sec before switch OFF
- CRM-42F: Staircase switch without warning flashes especially suited for use with energy-saving lamps, where frequent flashing may cause damage to the light source
- 1-MODULE, DIN rail mounting

CRM-42 / CRM-42F
delay OFF responsive to control contact switch on
Function:
Supply terminals:
Voltage range:
Burden:
Supply voltage tolerance:
Supply indication:
Time ranges:
Time setting:
Time deviation:
Repeat accuracy:
Temperature coefficient:
Output
Number of contacts:
Current rating:
Breaking capacity:
Inrush current:
Switching voltage:
Min. breaking capacity $D C$:
Output indication:
Mechanical life:
Electrical life (AC1):
Electrical life (AC5b):
Control
Control voltage:
Input Burden:
Glow tubes connetions:
Max. amount of glow lamps
connected to controlling input:
Control. terminals:
Impulse length:
Reset time:
Other information
Operating temperature:
Storage temperature:
Operating position:
Mounting/DIN rail:
Protection degree:
Overvoltage cathegory:
Pollution degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:

Dimensions:
Weight:
Standards:

A1-A2
AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
AC max. $12 \mathrm{VA} / 1.8 \mathrm{~W}$
$-15 \% ;+10 \%$
green LED
Mode AUTO: 0.5-10 min, Mode PROG
potentiometer
5% - mechanical setting
5% - set value stability
$0.05 \% /{ }^{\circ}$, at $=20^{\circ} \mathrm{C}\left(0.05 \% /{ }^{\circ} \mathrm{F}\right.$, at $\left.=68{ }^{\circ} \mathrm{F}\right)$

1x NO - SPST(AgSnO ${ }_{2}$, switches potencial A1
16 A / AC1
4000 VA / AC1, 384 W / DC
$30 \mathrm{~A} /<3 \mathrm{~s}$
$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
500 mW
red LED
3×10^{7}
0.7×10^{5}
$8 \times 10^{4}($ bulbs 1000 W) *

AC 230 V
AC0.53 VA
Yes
230 V - max. amount 50 pcs
(Measured with glow lamp $0.68 \mathrm{~mA} / 230 \mathrm{~V} \mathrm{AC}$)
A1-S or A2-S
min. $50 \mathrm{~ms} /$ max. unlimited
max. 150 ms
$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
any
DIN rail EN 60715
IP 40 from front panel / IP 10 terminals
III.

2
solid wire max. 2×2.5 or 1×4, (AWG 12)
with sleeve max. 1×2.5 or 2×1.5, (AWG 12)
$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$

$$
65 \mathrm{~g}(2.3 \mathrm{oz} .)
$$

EN 60669-2-3, EN 61010-1

Connection

3- wire connection

4- wire connection

Description

MODE PROG (the illumination time is defined by number of button pressing)

Symbol

* For bigger bulb loads and frequent switching is recommended to intensify the contact relay with power contactor e.g. VSXXX

Auxiliary and Power relays

$\stackrel{\rightharpoonup}{\beth}$	$\stackrel{\bar{U}}{\bar{y}}$			Other features				
					氠			
VS116B/230	MINI	AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$	1x16 A changeover/ SPDT	\bullet			VS116/B230 MINI, with installation into junction box or ceiling that allows control of lights, shades or awnings drives	32-33
VS116K	1M-DIN	AC230 and AC/DC 24 V	1x16A changeover/ SPDT	\bullet	\bullet	\bullet	as a separation relay (4kV), direct switching of appliances up to 4000VA (e.g. heaters), well visible signalization, noiseless	32-33
VS116U	1M-DIN	AC/DC 12..240 V	1x16A changeover/ SPDT	\bullet	\bullet	\bullet	as VS116K, but multivoltage supply coil	32-33
VS308K	1M-DIN	AC230 and AC/DC 24 V	$\begin{gathered} \text { 3x8 A changeover/ } \\ \text { 3PDT } \end{gathered}$	\bullet	\bullet	\bullet	a"multiplication" of contacts, $3 x$ changeover contact/3PDT only in 1-MODULE, well visible signalization, noiseless	32-33
VS308U	1M-DIN	AC/DC 12..240 V	3x8 A changeover/ 3PDT	\bullet	\bullet	\bullet	as VS308K, but multivoltage supply coil	32-33
VS316/24	1M-DIN	AC/DC 24 V	3x16 A changeover/ 3PDT	\bullet	\bullet	\bullet	3x changeover contact in 1-MODULE, possibility of "multiplication" of contacts and in the same time possibility of switching high output, possibility of 3 phase switching	32-33
VS316/230	1M-DIN	AC230V	3x16A changeover/ 3PDT	\bullet	\bullet	\bullet	as VS316/24, but AC 230V	32-33
782L	PLUG-IN	$\begin{aligned} & \text { AC 6-230V, } \\ & D C 6-110 \mathrm{~V} \end{aligned}$	4x8 A changeover/ 4PDT	\bullet			compact small relay for installation into plug relay, basic version equipped by LED indication, detent and testing lever	34-35
750L	PLUG-IN	$\text { AC } 6-230 \mathrm{~V},$ DC 6-110V	3x16 A changeover/ 3PDT	\bullet			as 782 , but into 11 -pin round socket, $3 x$ changeover contact / 3PDT 16A/250V	34-35

More about contact loadability on page 111

- Power relay used for switching larger load output, strengthen or „multiplying" contacts of the existing device

Type	Current rating	Number of contacts	Design	Supply terminals
VS116K	16 A	1	DIN (1M)	A1-A2 230V AC/A1-A3 24V AC/DC
VS116U	16 A	1	DIN (1M)	A1-A2 12-240V AC
VS116/B230	16 A	1	BOX (MINI)	L-N 230V AC
VS308K	8 A	3	DIN (1M)	A1-A2 230V AC/A1-A3 24V AC/DC
VS308U	$8 A$	3	DIN (1M)	A1-A2 12-240V AC/DC
VS316/24	16 A	3	DIN (1M)	A1-A2 24V AC/DC
VS316/230	16 A	3	DIN (1M)	A1-A2 230V AC

- Relays VS316/24, VS316/230 enable connection to a 3-phase circuit
- In the design 1-MODULE , DIN rail mounting, output status indicated by high intensity LED with choice of LED color (red, green, yellow, blue or white LED*)
- VS116/B230 MINI, mounting in installation box or ceilings, enabling switching of lights, motors for blinds or awnings
- For VS116/B230 status of output indicated by LED on front panel of device

Symbol

VS116B/230

VS316/24

VS116K

VS316/230

VS308K

VS308U

Notes:
Max. time of changeover of contact is 10 ms .
VS316/24 or VS316/230 enables switching of different phases or 3 phase voltage.

* possibility to choose blue, white and yellow color of LED for power relays line VS in case of minimal order quantity 100 pcs .

Description

VS116K, VS116U

terminal A3 only for VS116K

VS316/24, VS316/230

EAN codes

VS116U /red	8595188124607	VS308U /red	8595188130103	VS316/230 red	8595188135559
VS116U /green	8595188136433	VS308U /green	8595188136440	VS316/230 green	8595188136075
VS116U /yellow	8595188138499	VS308U /yellow	8595188138529	VS316/230 yellow	8595188136082
VS116U /white	8595188138482	VS308U /white	8595188138512	VS316/230 white	8595188136051
VS116U /blue	8595188138475	VS308U / blue	8595188138505	VS316/230 blue	8595188136068
VS116K/red	8595188122597	VS308K /red	8595188122696	VS316/24 red	8595188135771
VS116K /green	8595188122610	VS308K /green	8595188122719	VS316/24 green	8595188136105
VS116K/yellow	8595188122580	VS308K /yellow	8595188122689	VS316/24 yellow	8595188136129
VS116K /white	8595188122573	VS308K/white	8595188122672	VS316/24 white	8595188136099
VS116K /blue	8595188122603		VS308K/blue	8595188122702	VS316/24 blue
				8595188136112	

- Used for switching a higher power (load) than that of the switched element amplifier

Technical parameters	750L	782L
Contacts		
Number of switching contacts	3	4
Contact material:	AgNi	AgNi
Rated voltage:	AC $250 \mathrm{~V} / 440 \mathrm{~V}(50-60 \mathrm{~Hz}$)	AC $250 \mathrm{~V} / 250 \mathrm{~V}(50-60 \mathrm{~Hz}$)
Rated current:	10 A	6 A
peak current	20 A	12 A
Switching capacity	10A/250A	6A/250A
Switching capacity	3A/120V/1.5A/240V	1.5A/120V/0.75A/240V
Switching capacity	$10 \mathrm{~A} / 24 \mathrm{~V}$ DC	$6 \mathrm{~A} / 24 \mathrm{VDC}$
Switching capacity	$0.22 \mathrm{~A} / 120 \mathrm{~V} 0.1 \mathrm{~A} / 250 \mathrm{~V}$	$0.22 \mathrm{~A} / 120 \mathrm{~V} 0.1 \mathrm{~A} / 250 \mathrm{~V}$
Minimum switching voltage / current:	$5 \mathrm{~mA} / 5 \mathrm{~V}$	$5 \mathrm{~mA} / 5 \mathrm{~V}$
Coil	1.5W/DC	1.5W/DC
Rated Voltage (DC):	6, 12, 24, 48, 110 V	6, 12, 24, 48, 110 V
Rated voltage ($\mathrm{AC}, 50-60 \mathrm{~Hz}$):	6, 12, 24, 120, 230 V	6, 12, 24, 120, 230 V
Rated power (AC / DC)	AC $2.8 \mathrm{VA}(50 \mathrm{~Hz}) / 2.5 \mathrm{VA}(60 \mathrm{~Hz}) / \mathrm{DCC} 1.5 \mathrm{~W}$	AC 1.6 VA/ DC 0.9 W
Tolerance of supply voltage:	$-20 /+10 \%$	$-20 /+10 \%$
Isolating data		
Rated insulation voltage (AC):	2500 V	2500 V
Dielectric strength (AC)		
coil - contact:	2500 V	2500 V
contact - contact:	1500 V	1500 V
Isolating resistance at 500 VDC :	$10^{7} \Omega$	$10^{\prime} \Omega$
Distance contact - coil		
air:	$\geq 3 \mathrm{~mm}$	$\geq 1.6 \mathrm{~mm}$
surface:	$\geq 4.2 \mathrm{~mm}$	$\geq 3.2 \mathrm{~mm}$
General information		
Mechanical life:	$\geq 2 \times 10^{7}$	1×10^{7}
Electrical life (AC1):	$\geq 2 \times 10^{5} 10 \mathrm{~A} / 250 \mathrm{~V}$ AC	$\geq 10^{5} 6 \mathrm{~A} / 250 \mathrm{VAC}$
Max. switching frequency		
at rated load:	1200 cycles / hrs	1200 cycles / hrs
Without load:	12000 cycles / hrs	18000 cycles / hrs
Pick-up time / returning contact:	max. 12/10 ms	max. $10 / 8 \mathrm{~ms}$
Working temperature:	$-40 . .+55^{\circ} \mathrm{C}(\mathrm{AC})$	$-40 . .+55^{\circ} \mathrm{C}$
Storage temperature:	$-40 . .+85^{\circ} \mathrm{C}$	$-40 . .+85^{\circ} \mathrm{C}$
Protection:	IP40 from the front panel	IP40 from the front panel
Dimensions:	$35 \times 35 \times 54.4 \mathrm{~mm}$	$27.5 \times 21.2 \times 35.6 \mathrm{~mm}$
Weight:	83 g	35 g
Standards:	EN 60947-4-1, EN 60947-5-1	EN 61810-1,
		EN 60255-1-00, EN 61810-7

Coil data for 750L		
Product Type	Voltage[V]	Resistance [Ω]
AC voltage		
5006	AC6	4.3
5012	AC 12	18.5
5024	AC24	75
5048	AC48	305
5060	AC60	475
5115	AC 115	1840
5120	AC 120	1910
5220	AC220	6980
5230	AC230	7080
5240	AC240	7760
DC voltage		
1006	DC6	28
1048	DC48	1750
1060	DC60	2700
1110	DC 110	9200
1120	DC 120	11000
1012	DC12	110
1024	DC24	430
1220	DC220	37000

Coil data for 782L		
Product Type	Voltage [V]	Resistance[Ω]
AC voltage		
5006	AC6	9.8
5012	AC 12	39.5
5024	AC24	158
5042	AC42	470
5048	AC48	740
5060	AC60	930
5080	AC80	1720
5110	AC 110	3450
5115	AC 115	3610
5120	AC 120	3770
5127	AC 127	4000
5220	AC 220	15400
5230	AC230	16100
5240	AC 240	16800
DC voltage		
1005	DC5	28
1006	DC6	40
1012	DC 12	160
1024	DC24	640
1048	DC48	2600
1060	DC60	4000
1080	DC80	7100
1110	DC 110	13600
1125	DC 125	16000
1220	DC220	15400

Connection

The 750L connection

Socket ES-11A - for 750L

Max. Current: 10A
Weight: 60 g
Mounting on DIN rail
Designed for 3-relay contacts

Accessories to ES-11A - for 750L

Clip to relay 750L: 16-1351

The 782L connection

Socket ES-15/4N - for 782L

Max. Current: 12A
Weight: 59 g
Mounting on DIN rail
Designed for 4-relay contacts

Accessories to ES-15/4NA - for 782L

swivel label - TR1

The LED module, the protective diode and R/C member can be assigned into the slot

EAN code

750L/110V DC 750L/120V AC $750 \mathrm{~L} / 12 \mathrm{~V}$ AC 750L/12V DC $750 \mathrm{~L} / 230 \mathrm{~V}$ AC $750 \mathrm{~L} / 24 \mathrm{~V}$ AC 750L/24V DC 750L/48V DC 750L/6V AC $750 \mathrm{~L} / 6 \mathrm{~V}$ DC 782L/110V DC 782L/120V AC $782 \mathrm{~L} / 12 \mathrm{~V} \mathrm{AC}$ 782L/12V DC $782 \mathrm{~L} / 230 \mathrm{~V}$ AC 782L/24V AC 782L/24V DC 782L/48V AC 782L/48V DC $782 \mathrm{~L} / 6 \mathrm{~V}$ AC 782L/6V DC

8595188129992 8595188130028 8595188130011 8595188129978 8595188119221 8595188119207 8595188125147 8595188129985 8595188130004 8595188129961 8595188129923 8595188129947 8595188119085 8595188119030 8595188119115 8595188119092 8595188119047 8595188129954 8595188129916 8595188129930 8595188129909

ES-15/4NA ES-11A
ES8
Clip to relay 750
Clip to relay 782L

8595188119245 8595188129879 8595188136167 8595188119283 8595188119276

Dimmers

Recommendation for mounting：
Recommendation for mounting modular dimmers：leave gap of min． 0.5 module（approx． $9 \mathrm{~mm} / 04^{4}$ ）on side of the device to ensure better cooling of the device．

$\stackrel{\Delta}{\beth}$	$\frac{\text { 드̃ }}{\square}$	$\begin{aligned} & \text { 운 } \\ & \text { 끙 } \\ & \text { त } \\ & \text { 을 } \end{aligned}$	Type of dimmed load					Output				Dimming principal		$\begin{aligned} & \text { 듳 } \\ & \text { 드̃ } \\ & \text { 흠 } \end{aligned}$		
								늘를咅	Rated load							
					R				L	C						
DIM－2	1M－DIN	AC230V	\bullet	\bullet			X	X	triac	10－500VA＊	10－250VA	－	\bigcirc	X	staircase switch with gradual dim－up／dim－down， level and length of illumination，all values are adjustable	37
DIM－5	1M－DIN	AC 230V	\bigcirc	－		X	X	triac	10－500VA＊	10－250VA	－	－	X	control by button／buttons（connected in parallel）， short pressing $0 \mathrm{~N} / 0 \mathrm{FF}$ ，long pressing regulated brightness， memory recording	38	
DIM－14	1M－DIN	AC 230V	\bullet	\bullet	－	X	X	$\begin{gathered} 2 x \\ \text { MOSFET } \end{gathered}$	$500 \mathrm{VA*}$	500 VA＊	$500 \mathrm{VA*}$	－	\bullet	as DIM－5，but dims all types of load，inbuilt protections against thermo and current overload，electronic fuse	39	
DIM－15	1M－DIN	AC 230V	－	－	－	－	－	$\begin{gathered} 2 x \\ \text { MOSFET } \end{gathered}$	－	－	\bullet	X	X	designated for dimming of： 1）LED bulbs and LED lighting sources 2）dimmable saving fluorescent lamps	42	
DIM－6	6M－DIN	AC 230V	－	\bullet	\bullet	X	X	$\begin{gathered} 4 x \\ \text { MOSFET } \end{gathered}$	2000 VA ＊	2000 VA＊	2000 VA＊	－	－	for controlled dimming of lights up to 2 kW ，with a possibility of module extention up to 20 kW （el．bulbs and hallogen lights， also with ballast type（ or L）	40	
DIM－6－3MP	3M－DIN	AC 230V	\bullet	\bigcirc	－	X	X	$\begin{gathered} 2 x \\ \text { MOSFET } \end{gathered}$	1000 VA ＊	$1000 \mathrm{VA}^{*}$	1000 VA ＊	X	X	is expanding power modul for controlled dimmer DIM－6	41	
SMR－S	B0X	AC 230V	－	－		X	X	triac	10－300VA＊	10－150VA	－	\bigcirc	X	as DIM－5，but for mounting under a wall－switch，into a wiring box， 3 wire connection（without neutral） is expanding power modul for controlled diммеr DIM－6	44	
SMR－U	B0X	AC 230V	\bigcirc	\bigcirc	\bigcirc	X	X	$\begin{gathered} 2 x \\ \text { MOSFET } \end{gathered}$	500VA＊	500VA＊	500VA＊	\bigcirc	\bullet	as DIM－14，but for mounting under a wall－switch， into an installation box	44	
SMR－M	B0X	AC 230V	－	－	－	－	－	$\begin{gathered} 2 x \\ \text { MOSFET } \end{gathered}$	\bullet	－	－	－	－	designated for dimming of： 1）LED bulbs and LED lighting sources 2）dimmable saving fluorescent lamps	42	
LIC－1	1M－DIN	AC 230V	－	－	\bigcirc	－	－	$\begin{gathered} 2 x \\ \text { MOSFET } \end{gathered}$	300 VA＊	300 VA ＊	$300 \mathrm{VA*}$	－	\bullet	for maintaining the constant illumination level． ESL dimmable compact fluorescent lamps，LED lamps， R，L，C，－resistive，inductive and capacitive loads	45	

Note：＊－with load over 300VA is necessary to ensure sufficient cooling

Expandatory：	type of load （symbols）	bulbs， halogen lamps	low－voltage el．bulbs 12／24V With wound transformers	low－voltage el．bulbs 12／24｜ With electronictransformers	ESL dimmable compact fluorescen lamps	LEDlamps
R－RESISTIVE L－INDUCTIVE C－CAPACITIVE		(M)	$\boldsymbol{F}_{+}^{-1}{ }_{+}^{-1}$	$\cdots=\boxed{\square}$	吅－7	
ESL－energy saving fluorescent lamps LED－LED lamps		R	L	C	ESL	LED

- Designated for dimming el. bulbs, halogen lights and halogen lights with winding transformers
- Intelligent control of halogen lights, function of gradual switching on and dimming
- Controlling inputs for push button and switch
- Values are set by potentiometers on front panel of the product, adjustable:
- maximum dim-up
- speed (fluency) of dim-up
- speed (fluency) of dim-down
- time for which a light is on with maximum dim-up
- All time intervals can be adapted according to a request
- Output without contact: 1x triac
- Load AC 5b (el. bulbs) 500 W
- Clamp terminals
- Parallel connection of controlling pushbuttons is possible
- Protection against over-temperature inside the product - switches output off + signalizes overheating by LED flashing
- Note: possibility of start and finish adjustment up on 1 hour, device has description DIM-2 1h
- 1-MODULE, DIN rail mounting
Technical parameters: DIM-2

Supply terminals:
Voltage range:
Burden:
Supply voltage tolerance:
Supply indication:
Time setting by:
Time deviation:
Repeat accuracy:
Temperature coefficient:
Recovery time:
Controlling T1 (button)
Terminals:
Voltage:
Power on control input:
Impulse length:
Glow-lamps:
Max. amount of glow lamps
connected to controlling input:
Controlling T 2 (switch)

Terminals:	T2-A1
Voltage:	AC230 V
Power on control input:	0.1 VA
Impulse length:	min. $100 \mathrm{~ms} / \mathrm{max}$. unlimited
Output	
Current rating:	2 A
Resistance load:	10-500 VA
Inductive load:	10-250 VA
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Operating position:	any
Mounting/DIN rail:	DIN rail EN 60715
Protection degree:	IP 40 from front panel / IP 10 terminals
Overvoltage cathegory:	III.
Pollution degree:	2
Max. cable size (mm^{2}):	solid wire max. 2×2.5 or $1 \times 4 /$ with sleeve max. 1×2.5 or 2×1.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}$ (3.5 " $\times 0.7^{\prime \prime} \times 2.5{ }^{\prime \prime}$)
Weight:	65 g (2.3 oz.)
Standards:	EN 60669-2-1, EN 61010-1

Function

Legend:

Brightness: 10-100\%
t1 Dim-up time: 1-40 s
t2 Time delay: 0s-20min
t3 Dim-down time: 1-40s

Controlled via input T1 (button)

Controlled via input T2 (switch)

The switch starts the cycle and it stops on max.set brightness. After the switch is off, the cycle will continue until completed.

EAN code
DIM-5 /230V: 8595188115612

Technical parameters	DIM-5
Supply terminals:	A1-A2
Voltage range:	AC $230 \mathrm{~V} / 50 \mathrm{~Hz}$
Burden:	max. 5 VA
Supply voltage tolerance:	-15\%; +10\%
Supply indication:	green LED
Controlling	
Control terminals:	T-A1
Control voltage:	AC230 V
Power control input:	max. 1.5 VA
Impulse length:	min. $80 \mathrm{~ms} /$ max. unlimited
Glow-lamps:	Yes
Max. amount of glow lamps connected to controlling input:	230V - max. amount 50 pcs (Measured with glow lamp 0.68mA/230V AC)
Output	
Current rating:	2 A
Resistance load:	10-500 VA
Inductive load:	10-250 VA
Output indication:	red LED

Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Operating position	any
Mounting/DIN rail:	DIN rail EN 60715
Protection degree:	IP 40 from front panel / IP 10 terminals
Overvoltage cathegory:	III.
Pollution degree:	2
Max. cable size (mm^{2}):	solid wire max. 2×2.5 or 1×4 (AWG 12) with sleeve max. 1×2.5 or 2×1.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}$ ($\left.3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5{ }^{\prime \prime}\right)$
Weight:	58 g (2 oz.)
Standards:	EN 60669-2-1, EN 61010-1

- Designated for dimming el. bulbs, halogen lights and halogen lights with winding transformers
- For switching and dimming lights in corridors, stairways... control input for push-buttons (parallel connection possible)
- Short press turns light on/off, longer press ($>0.5 \mathrm{~s}$) provides dim up / dim down
- When switched off, brightness level is stored in a memory and when On again it restores last brightness level
- Voltage range: AC 230 V
- Contactless output, triac 2A/ 500 VA
- LED output indication (with any level of brightness)
- Possibility to connect control buttons in parallel
- 1-MODULE, DIN rail mounting
- Clamp terminals
- Protection against over-heating inside the product - switches output off + signalizes overheating by LED flashing

Symbol

Connection

Description

Recommendation for mounting: leave a gap of min. 0.5 module (approx. $9 \mathrm{~mm} / 0.4^{\prime \prime}$) on side of the device to ensure better cooling of the device.

- Designed for dimming of incandescent bulbs and halogen lights with wound or electronic transformer
- For switching and dimming of lights, control inputs for a button
- Short impulse switches ON/OFF, longer impulse (>0.5s) enables gradual light intensity setting
- Last intensity level is stored in memory when switched off
- Voltage range: AC 230 V
- Output without contacts: $2 \times$ MOSFET
- LED output indicator with any level of brightness possibility of parallel connection of control buttons
- Resistive, inductive or capacitive load, up to 300 W , for a short term up to 500 W
- 1-MODULE, DIN rail mounting
- Electronic overvoltage protection
- Protection against over-heating inside the device - output off

DIM-14/230V: 8595188135955

Technical parameters	DIM-14
Supply terminals:	A1-A2
Voltage range:	AC $230 \mathrm{~V} / 50 \mathrm{~Hz}$
Burden:	1.3 W
Supply voltage tolerance:	$-15 \% ;+10 \%$
Dissipated power:	6 VA
Indication output:	green LED
Controlling	
Control terminals:	A1-T
Control voltage:	AC 230 V
Power control input:	AC0.3-0.6 VA
Impulse length:	min. $80 \mathrm{~ms} /$ max. unlimited
Glow-lamps:	Yes
Max. amount of glow lamps connected to controlling input:	230V - max. amount 20 pcs
Output	(Measured with glow lamp $0.68 \mathrm{~mA} / 230 \mathrm{~V}$ AC)

Contactless:	$2 \times$ MOSFET
Current rating:	2 A
Resistance load:	500 VA*
Inductive load:	500 VA*
Capacitive load:	500 VA*
Output state indication:	red LED
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.95^{\circ} \mathrm{F}\right)$
Storage temperature:	$-20^{\circ} \mathrm{C}$ to $+60^{\circ}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Operating position:	any
Mounting/DIN rail:	DIN rail EN 60715
Protection degree:	IP 40 from front panel / IP 10 terminals
Overvoltage cathegory:	III.
Pollution degree:	2
Max. cable size (mm^{2}):	solid wire max. 2×2.5 or 1×4 (AWG 12) with sleeve max. 1×2.5 or 2×1.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}$ ($\left.3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5{ }^{\prime \prime}\right)$
Weight:	58 g (2 oz.)
Standards:	EN 60669-2-1, EN 61010-1

Description

*When load is above 300 VA it is necessary to ensure sufficient cooling.
Recommendation for mounting: leave a gap of min. 0.5 module (approx. $9 \mathrm{~mm} / 0.4^{\prime \prime}$) on side of the device to ensure better cooling of the device.

Warning for DIM-14: it is not allowed to connect together loads of inductive and capacitive type in the same time.

DIM-6/230V: 8595188136914

- Expanding power module only for use in combination with DIM-6
- DIM6-3M-P provides power increasement (of about 1000VA) of load connected to DIM-6 (it means: 2000 VA (DIM-6) $+1000 \mathrm{VA}($ DIM6-3M-P) $=3000 \mathrm{VA}$)
- DIM-6 can be connected with up to 8 DIM6-3M-P to expand power up to 10000 VA
- Attention-device has to be protected by circuit breaker accordant to the load connected to device
- DIM-6 in installation is cooled by natural air flow. If the natural air flow access is reduced, cooling has to be provided by ventilator. Rated operating temperature is $35^{\circ} \mathrm{C} / 95^{\circ} \mathrm{F}$
- If there are several DIM6-3M-P connected to DIM-6, the distance between them has to be min. $2 \mathrm{~cm} / 0.8^{\prime \prime}$
- Max. lenght of bus EB is $1 \mathrm{~m} / 39.4^{\prime \prime}$ and the connection has to be realized by schielded cable

Connection

*Potencial L on device terminal, has to be protected by circuit breaker accordant to the load connected to device.

$\begin{array}{lr}\text { EAN code } & \\ \text { DIM-15/230V: } & 8595188140690 \\ \text { SMR-M: } & 8595188143776\end{array}$

- Designated for dimming of: a) LED bulbs and LED light sources
b) dimmable saving fluorescent lamps
- Enables gradual setting of luminance by push-button (non-detent) or parallel buttons
- Returns to last state upon re-energization
- Type of light source (LED or saving fluorescent lamp) is set by switch-over on the front panel of device
- Minimal luminance, set by potentiometer on the front panel, eliminates flashing of some types of saving fluorescent lamps
DIM-15
- Supply voltage 230V AC
- Output status is indicated by red LED:
- shines when output is active
-flashes while heating overload, at the same time output is disconnected
- 1-MODULE version, DIN rail mounting, saddle terminals

SMR-M

- button-controlled dimmer intended to be installed in an installation box (e.g. KU-68) into the existing electrical wiring
- protection against excessive temperature inside the device - switches off the output

Operating position:	any		
Mounting:	DIN rail EN 60715	free at connecting wires	
Protection degree:	IP 40 from front panel /	IP30 in standard	
	IP 10 clips	conditions	

Overvoltage category:	III.	
Pollution level:	2	
Terminal wire capacity:	max. 2×2.5, with sleeve max. 1×2.5, max. 2×1.5 (AWG 12)	x
Connection:	x	solid w. CY, $\emptyset 0.75 \mathrm{~mm}^{2}$ (AWG 18), lenght 90 mm ($3.5^{\prime \prime}$)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7{ }^{\prime \prime} \times 2.5{ }^{\prime \prime}\right)$	$49 \times 49 \times 21 \mathrm{~mm}$ ($\left.1.9^{\prime \prime} \times 1.9^{\prime \prime} \times 0.8{ }^{\prime \prime}\right)$
Weight:	57 g (1.98 oz.)	38 g (1.3 oz.)
Standards:	EN 60669-2-1, EN 61010-1	

[^1]

Minimal luminance setting:

"LED bulb"

- if the light is turned off, short press ($<0.5 \mathrm{~s}$) switches the light onto last set luminance level
"Energy saving lamp" \&
- when light is off, short impulse turns lamp on and then luminance is decreased to set level
- setting of minimal luminance by saving fluorescent lamps serves for harmonizing of lowest light intensity prior its unprompted switching off

Device describtion

Connection example

Additional information

■ it is possible to dim only LED bulbs equipped with capacitator supplying

- it is not possible to dim saving fluorescent lamps without marking: dimmable

■ an incorrect setting of light source has effect only on dimming range, it means neither dimmer or
load get demaged

- maximal load is counting with usage of LC filter
- actual list of tested light sources is constantly refreshing, further information on www.elkoep.com/products/

EAN code
SMR-S /230V: 8595188123518
SMR-U /230V: 8595188130738

Technical parameters	SMR-S	
3-wire con., without neutral	4-wire con., with neutral	
Connection:	$230 \mathrm{VAC} / 50 \mathrm{~Hz}$	
Voltage range:	max. 3 VA	
Power input (no operation/make):	$-15 \% ;+10 \%$	
Supply voltage tolerance:		
Output		

Output

Resistive load:
Inductive load:
Capacitive load:

Control
Control voltage:
Current:
Impulse lenght:
Glow tubes connection:

Max. amount of glow lamps
connected to controlling input:
Other information
Operating temperature:
Operating position:
Mounting:
Protection degree:
Overvoltage cathegory:
Pollution degree:
Fuse:
Connection:

Glow lamps in a button:	max. number 10
Dimensions:	$49 \times 49 \times 13 \mathrm{~mm}\left(1.9^{\prime \prime} \times 1.9^{\prime \prime} \times 0.5^{\prime \prime}\right)$
Weight:	$32 \mathrm{~g}(1.1 \mathrm{oz})$.
Standards:	$\quad 32 \mathrm{~g}(1.1 \mathrm{oz})$.

Note:
*- with load over 300 VA is necessary to ensure sufficient cooling.

Function SMR-S, SMR-U

Short press ($<0.5 \mathrm{~s}$) turns a light on, another short press turns it off. A longer press ($>0.5 \mathrm{~s}$) causes a gradual regulation of light intensity min-max-min round until the button is released. After releasing a set intensity is kept in memory, further short presses turn the light on/off keeping the set intensity. The intensity can be changed by further long press. After de-energising the relay remembers the set value.

- Button-controlled dimmers designated for flush mounting into a wiring box, into an existing electroinstallation (SMR-S doesn't need neutral for correct function)
- Used to control lamp brightness, dimming, possible to control from more places (parallel connections)
- Protection against temperature overrun inside the device - output off
- By changing wall-switch for a switch with SMR-S/SMR-U installed below you can reach effective brightness control
- SMR-S enables dimming of electric bulbs 12 V , halogen lights with wound transformers (inductive load)
- SMR-U enables also dimming 12 V halogen lights with electronic transformers (capacitive load)
- It can not be used for dimming of fluorescent lamps and energy saving lamps
- SMR-S - 3-wire connection, functional without neutral
- max. load: 300 VA (el. bulbs or halogen lights with wound transformer)
- contactless output -1x triac
- with exchangeable fuse
- SMR-U - 4-wire connection
- max. load: 500 VA (el. bulbs or halogen lights with electronic or wound transformer) - contactless output - 2 xMOSFET
- electronic over-heating protection - output off in case of short-circuit or overload

Connection SMR-S, SMR-U

Warning: it cannot be used for fluorescent lights and energy saving lights!
SMR-U: It is not allowed to connect together loads of inductive and capacitive type in the same time.

Description of SMR-S

Technical parameters	LIC-1
Supply voltage tolerance:	L-N
Supply voltage:	AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
Supply voltage tolerance:	$\pm 15 \%$
Apparent/loss power input:	max. $1.6 \mathrm{VA} / 0.8 \mathrm{~W}$
Power supply indication:	green LED

Control
Button - control terminals:
Control input power:
Duration of control pulse:

Glow tubes connection (terminals LTT):
Max. amount of glow lamps
connected to controlling input:
Blocking input - terminals:

Control voltage:
Glow tubes connection (terminals L-B):
Duration of control pulse:
Output status indication:
Load capacity:*
Other information
Operating temperature:
Storage temperature:
Operating position:
Mounting:
Ingress protection:
Overvoltage category:
Contamination degree:
Connecting conductor
cross-section $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:
Standards:
L-T
AC 230 V
max. 0.6 VA
min. $80 \mathrm{~ms} /$ max. unlimited
Yes
230 V -max. amount 50 pcs
(Measured with glow lamp $0.68 \mathrm{~mA} / 230 \mathrm{VAC}$)

L-B
AC 230 V
max. 0.1 VA

No
min. $80 \mathrm{~ms} / \mathrm{max}$. unlimited
$2 x$ MOSFET
red LED
$300 \mathrm{~W}(\operatorname{at} \cos \varphi=1)$
$-20^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.95^{\circ} \mathrm{F}\right)$
$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
any
DIN rail EN 60715
IP 40 from front panel / IP 10 terminals
III.

2
solid wire max. 2×2.5 or 1×4 (AWG 12) with sleeve max. 1×2.5 or 2×1.5 (AWG 12)
$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$

$$
57 \mathrm{~g}(1.98 \mathrm{oz} .)
$$

EN 60669-2-1, EN 61010-1

* Due to a large number of light source types, the maximum load depends on the internal construction of dimmable LEDs and ESL bulbs and their power factor $\cos \varphi$.
The power factor of dimmable LEDS and ESL bulbs ranges from $\cos \varphi=0.95$ to 0.4.
An approximate value of maximum load may be obtained by multiplying the load capacity of the dimmer by the power factor of the connected light source.
- Automatically regulates the intensity of light in a room
- External sensor scans the intensity and based on the preset value it decreases or increases the brightness of light
- Designed for dimming the LED lights, ESL - dimmable energy saving lamps, R-inductive, L- resistive and C-capacitive load
- Operating status:

1-0ff
2 - Automatic regulation
3 - Cleaning (maximum level of illumination)
4 - Setting the minimum lighting brightness
5 -Setting the desired level of illumination

- Optional connection of buttons with 50 neon lamps
- Blocking the automatic control via external signal, power supply 230V AC
- 1-MODULE, DIN rail mounting, clamping terminals

Selection of light source type

lights ferromagnetic transformer

Function

Control (external button):

- Pressing the button shortly ($<0.5 \mathrm{~s}$) - always switches the light off
- Medium-long press (0.5-3s) - automatic control
- Long press (> 3s) - cleaning
- $3 \times$ short presses from "off" - setting the desired level of illumination
- $5 x$ short presses from "off" - setting the minimum brightness

In mode 4 and 5, the lamp brightness changes periodically from minimum to maximum. At a required level of brightness, the value is stored into memory by pressing the button shortly.

Power supplies

Voltage | Stabilized |
| :---: |
| DC- switching |

Stabilized
DC- linear
Nonstabilized
$A C+D C$

Nonstabilized AC

			Output						Prote 0	ction a verloa	gainst		
$\stackrel{\sim}{2}$	$\stackrel{\overline{5}}{\overline{1}}$		Y	¢									(
ZNP-10-12	3M-DIN	$\begin{gathered} \text { AC } 230 \mathrm{~V}, \\ -15 /+10 \% \end{gathered}$	\bullet	\bullet		$\begin{aligned} & \mathrm{AC} 12 \mathrm{~V} \\ & \mathrm{DC} 12 \mathrm{~V} \end{aligned}$	0.8 A	-	\bullet			$D C$ and $A C$ nonstabilized, output voltage 12 V - where it is not required or where there is stabilized differently/later	51
ZNP-10-24	3M-DIN	$\begin{aligned} & \text { AC } 230 \mathrm{~V}, \\ & -15 /+10 \% \end{aligned}$	\bullet	\bullet		$\begin{aligned} & \text { AC } 24 \mathrm{~V} \\ & \text { DC } 24 \mathrm{~V} \end{aligned}$	0.4A	-	\bullet			DC and AC nonstabilized output voltage 24 V - where it is not required or is stabilized later	51
ZSR-30	3M-DIN	$\begin{aligned} & \text { AC } 230 \mathrm{~V}, \\ & -15 /+10 \% \end{aligned}$	\bullet	\bullet	-	$\begin{aligned} & \mathrm{DC} 5-24 \mathrm{~V} \\ & \mathrm{AC} 24 \mathrm{~V} \end{aligned}$	1.6A-0.3A	S	\bullet	\bullet		regulated output voltage in a wide range DC 5 -24V: possibility to adjust output voltage with load according to request	51
PSB-10-12	MINI-BOX	AC 100-250V		-	-	DC12V	0.84A	S		\bullet	-	stabilized switching power supply with fixed output voltage $12 \mathrm{~V} / 10 \mathrm{~W}$, box	48-49
PSB-10-24	MINI-BOX	AC 100-250V		-	-	DC24V	0.42 A	S		\bullet	-	stabilized switching power supply with fixed output voltage 24V/10W, box	48-49
PS-10-12	1M-DIN	$\begin{aligned} & \text { AC } 230 \mathrm{~V}, \\ & -20 /+10 \% \end{aligned}$		\bullet	-	DC12V	0.84A	S	\bullet	\bullet	\bullet	stabilized switching power supply with fixed output voltage $12 \mathrm{~V} / 10 \mathrm{~W}$, 1 module	48-49
PS-10-24	1M-DIN	$\begin{gathered} \text { AC } 230 \mathrm{~V}, \\ -20 /+10 \% \end{gathered}$		\bullet	-	DC24V	0.42A	S	\bullet	\bullet	\bullet	stabilized switching power supply with fixed output voltage 24V / 10W, 1 module	48-49
PS-30-12	3M-DIN	$\begin{gathered} \text { AC } 230 \mathrm{~V}, \\ -20 /+10 \% \end{gathered}$		-	-	DC12V	2.5 A	S	\bullet	\bullet	\bullet	stabilized switching power supply with fixed output voltage $12 \mathrm{~V} / 30 \mathrm{~W}$, 3 module	48-49
PS-30-24	3M-DIN	$\begin{gathered} \text { AC } 230 \mathrm{~V}, \\ -20 /+10 \% \end{gathered}$		-	-	DC24V	1.25 A	S	\bullet	\bullet	\bullet	stabilized switching power supply with fixed output voltage 24V/30W, 3 module	48-49
PS-30-R	3M-DIN	$\begin{gathered} \text { AC } 230 \mathrm{~V}, \\ -15 /+10 \% \end{gathered}$		\bullet	-	DC12-24V	2.5A-1.25 A	S	\bullet	\bullet	\bullet	stabilized switching power supply with fixed output voltage 12-24V / 30W, 3 module	48-49
PS-100-12	6M-DIN	$\begin{gathered} \text { AC } 230 \mathrm{~V}, \\ -20 /+10 \% \end{gathered}$		-	-	DC12V	8.4 A	S	\bullet	\bullet	\bullet	stabilized switching power supply with fixed output voltage $12 \mathrm{~V} / 100 \mathrm{~W}$, 6 module	48-49
PS-100-24	6M-DIN	$\begin{aligned} & \text { AC } 230 \mathrm{~V} \\ & -20 /+10 \% \end{aligned}$		\bullet	\bullet	DC24V	4.2A	S	\bullet	\bullet	\bullet	stabilized switching power supply with fixed output voltage 24V / 100W, 6 module	48-49
DR-60-12	4.5M-DIN	AC $100-240 \mathrm{~V}$ DC $124-370 \mathrm{~V}$		\bullet		DC12V	4.5 A	S				efficient switching power supply of $D C$ voltage $12 \mathrm{~V} / 54 \mathrm{~W}$, wide range of input voltage (AC 100-240 and DC 124-370V)	50
DR-60-24	4.5M-DIN	AC 100-240V DC $124-370 \mathrm{~V}$		\bullet		DC24V	2.5 A	S				efficient switching power supply of DC voltage $24 \mathrm{~V} / 60 \mathrm{~W}$, wide range of input voltage (AC 100-240 and DC 124-370V)	50
ZTR-8-8	2M-DIN	$\begin{aligned} & \text { AC } 230 \mathrm{~V}, \\ & -15 /+10 \% \end{aligned}$	\bullet			8V	1A	-			\bullet		52
ZTR-8-12	2M-DIN	$\begin{gathered} \text { AC } 230 \mathrm{~V}, \\ -15 /+10 \% \end{gathered}$	\bullet			12 V	0.66A	-			\bullet	bell transformer (short-circait-proof) for supplying of bells, door openers, home call-boxes	52
ZTR-15-12	3M-DIN	$\begin{aligned} & \text { AC } 230 \mathrm{~V}, \\ & +/-10 \% \end{aligned}$	\bullet			4-8-12V	2-1.5-1A	-			\bullet		52

Connection

Connection

NOVINKA

PSB-10-12 / PSB-10-24
designated for installation into an installation box. Suitable for controlling of lighting sources, thermo valves, shutter engines, etc.

PS-10-12

PS-30-12

Supply terminals

Output voltage terminals \oplus

PS-30-R
Output voltage terminals Supply terminals

Output voltage terminals \oplus

PS-100-12

DR-60-12V: 8595188125048
DR-60-24V: 8595188125055

Technical parameters:
Input (U prim)
Vir

Voltage range:	88-264V AC/ 47-63 Hz nebo 124-370 V DC	
Supply voltage tolerance:	in the range of supply voltage	
Consumption without load (max):	3VA	
Consumption with full load (max):	AC65 VA	AC70VA
Output (Usec)		
Output voltage:	$12 \mathrm{~V} \pm 10 \%$	$24 \mathrm{~V} \pm 10 \%$
Max.load:	4.5A / 54W	2.5A / 60W
Output voltage-no load DC:	$12 \mathrm{~V} \pm 10 \%$	$24 \mathrm{~V} \pm 10 \%$
Wave of output voltage:	0.12 V	0.15 V
Efficiency:	83.5\%	86\%

Tolerance of output voltage:	$\pm 1 \%$
Electronic fuse:	electronic protections short-circuit, over load, over voltage

Fine adjustment of output voltage:	$\pm 10 \%$ - trimrem
Overloud protection:	to 105-160\% of rated output
Time delay after connection:	100 ms for 100\% loading and AC 230 V
Other information	
Working humidity:	20-90\% RH
Thermal coeficient:	$0.03 \% /{ }^{\circ} \mathrm{C}\left(0\right.$ to $\left.50^{\circ} \mathrm{C}\right) / 0.03 \% /{ }^{\circ} \mathrm{F}\left(32{ }^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Storage temperature:	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right) /(10-95 \% \mathrm{RH})$
Electrical strength (prim/sec):	3 kV
Protection degree:	IP20 device/ IP40 in-built in distribution board
Max. cable size (mm^{2}):	solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×1.5 (AWG 10)
Dimensions:	$78 \times 93 \times 56 \mathrm{~mm}$ (3.1" $\times 3.7^{\prime \prime} \times 2.2$)
Weight:	300 g (10.6 oz.)
Standards:	EN 61010-1, EN 61558-1, EN 61558-2-17

Symbol

Connection

DR-60-12
DR-60-24

Description

Regulated stabilized power supply ZSR-30

- Supply of various devices and appliances by safe voltage with fully galvanic separation from the main.
- Input voltage: AC 230 V
- Output voltage: DC $5-24 \mathrm{~V}$ stab., DC 24 V unstab. and AC 24 V
- Exceeded current limit values is indicated by LED flashing
- When there is full short-circuit, output is disconnected, output current is limited by an electronic fuse
- 3-MODULE, DIN rail mounting
Nonstabilized power supply ZNP-10-12V, ZNP-10-24V
- AC and DC output voltage: 12 V or 24 V , nonstabilized
- Power supply with fixed output voltage
- Protection against short-circuit and overload by a safety fuse
- Input voltage: AC 230 V
- 3-MODULE, DIN rail mounting

Technical parameters	ZSR-30	ZNP-10-12V	ZNP-10-24V	
Entry (Uprim)				
Voltage range:		AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$		
Supply voltage tolerance:		$-15 \% ;+10 \%$		
Consumption without load (max):	6 VA	7 VA	6.5 VA	
Consumption with load (max):	10VA		11 VA	

Connection

ZSR-30
Output (Usec)

Other information:

Operating temperature:	$-20 . .+40^{\circ}\left(-4{ }^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$		
Storing temperature:	$-20 . .+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.140{ }^{\circ} \mathrm{F}\right)$		
Electrical strenght (prim/sec):	4 kV		
Protection degree:	IP 40 from front panel/ /P 20 terminals		
Max. cable size (mm^{2}):	solid wire max. 1×2.5 or 2×1.5 / with sleeve max. 1×1.5 (AWG 12)		
Dimensions:	$90 \times 52 \times 65 \mathrm{~mm}\left(3.5^{\prime \prime} \times 2 \times \times 2.6^{\prime \prime}\right)$		
Weight:	390 g (13.8 oz.)	360 g (13.8 oz.)	360 g (13.8 oz.)
Standards:	EN 61010-1, EN 61558-2-1. EN 61558-1		

WARNING! Values of max. load are valid for (operational) temperature.
Total loads on all output terminals may not exceed this values:
by supplying $230 \mathrm{~V}-253 \mathrm{~V}-8 \mathrm{~W}$
from 230 V . . . 207 V output power is proportionately decreesing onto 5 W

Description

Twilight switches

Accessories

of twilight switches:

Memory relays

Control and signalling devices

Twilight switch SOU-3

EAN code

SOU-3/230V: 8595188140560
Technical parameters SOU-3

Supply

Supply terminals:	L-N
Voltage range:	AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
Tolerance of voltage range:	-15\% .. +10\%
Input (apparent/loss):	$m a x 6 \mathrm{VA} / 0.7 \mathrm{~W}$
Setting the scale level of lighting:	by jumper J2
Function \varangle (twilight switch) - range 1:	1 ... 10 Lx
- range 2:	$10 . .100 \mathrm{Lx}$
- range 3:	100 ... 1.000 Lx

Function

- range 1:	$100 \ldots 1000 \mathrm{Lx}$
- range 2:	$1000 \ldots 10000 \mathrm{Lx}$
- range 3:	$10000 \ldots 100000 \mathrm{Lx}$
Setting function	by jumper J3
Level of light-slight:	$0.1 \ldots 1$ x range
Slight setting of light level:	potenciometer
Time delay t:	$0 / 1$ min. / 2 min.
Delay setting t:	by jumper J1

Output

Output contact:	$1 \times \mathrm{NO}-\mathrm{SPST}\left(\mathrm{AgSnO}_{2}\right)$
Current rating:	$12 \mathrm{~A} / \mathrm{AC1}^{2}$
Switching output:	$3000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$
Peak current:	$30 \mathrm{~A} /<3 \mathrm{~s}$
Switched voltage:	$250 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V} \mathrm{DC}$
Min.switching output:	500 mW
Mechanical life:	3×10^{7}
Electrical life:	0.7×10^{5}

Other information:

Operation temperature:	$-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Storing temperature:	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Electrical strengh:	$4 \mathrm{KV}($ supply-output $)$
Operation position:	sensor-side down or on the sides
Protection degree:	IP65
Overvoltage cathegory:	III.

Pollution level:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Suggested power-supply cable:
Dimensions:
max. 1×2.5, max. $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)
CYKY 3×2.5 (CYKY4x1.5)
$98 \times 62 \times 34 \mathrm{~mm}\left(3.9^{\prime \prime} \times 2.4^{\prime \prime} \times 1.3^{\prime \prime}\right)$
Weight:
122 g (4.3 oz.$)$
EN 60255-6, 61010-1

Function

- It serves as control of the device on the basis of ambient light intensity
- External version in IP65, box for mounting on the wall, front cover removable without screws
- Built in high resolution light sensor
- Two devices in one, function is set by jumper:
- twilight switch - contact closes by decreasing of ambient light intensity, and opens by its increasing - light switch - contact closes by increasing ambient light intensity, and opens by decreasing light intensity. Used for switching of devices by reaching of pre-set ambient light level, usually sun shine(pulling down the shutters or blinds, activation of solar panels) adjustable (by jumper) ranges of light level
- 3 adjustable levels of time delay (for elimination of short-term fluctuations of light intensity - for short increases in light intensity)
- Supply voltage 230 V AC
- Potential-free output contact 12A/AC1 switching

Description (proportion is accordant to real size)

Connection

Device is standardly supplied with jumper L-15 (3-wire connection).
For the correct function of device is neccesary sensor-side down device mounting.

- Latching relays, controlled by buttons from several locations can replace three way switches or cross bar switches thanks to control by buttons (unlimited number, connected in parallel by 2 wires), installation gets more transparent and faster for mounting
- Relay MR-41/UNI, MR-42/UNI memorize its last state even after supply failure. During the failure relay will turn off and after re-energizing will automatically turns on.
- MR-41
- output contact: 1x changeover / SPDT 16 A
- MR-42
- options - $2 x$ parallel contacts or the other relay is latching
- function selected via external jumper between B1-B2
- output contact: $2 x$ changeover /SPDT 16 A
- Supply voltage AC 230 V or $\mathrm{AC} / \mathrm{DC} 12-240 \mathrm{~V}$
- 1-MODULE version, DIN rail mounting, controlling by buttons

Technical parameters	MR-41	MR-42
Number of functions:	1	2
Sel		

Supply terminals:	A1-A2
Voltage range:	$A C / D C 12-240 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$

Voltage range:
Consumption (apparent/loss)
Supply voltage tolerance:

Supply voltage tolerance:
Supply indication:
Output
Number of contacts:

Controlling
 Consumption of input:

Load between A2-ON/OFF:

Control. terminals:

Glow tubes connetions:
Max. amount of glow lamps
connected to controlling input:
Impulse length:
Other information

Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Electrical strength:	4 kV (supply -output $)$

Mounting/DIN rail:
Protection degree:
Overvoltage cathegory:
Pollution degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:
Standards:
any
DIN rail EN 60715
AC 0.025-0.2 VA / DC $0.1-0.7 \mathrm{~W}(\mathrm{UNI}), ~ A C 0.53 \mathrm{VA}(A C 230 \mathrm{~V})$
Yes
A1-0N/OFF
Yes
230V - max. amount 5 pcs
(Measured with glow lamp $0.68 \mathrm{~mA} / 230 \mathrm{~V} \mathrm{AC}$)
min. $25 \mathrm{~ms} /$ max. unlimited
$-20^{\circ} \mathrm{C}$ to $+55^{\circ}$ ($\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
C10+70く(22 10 158

IP 40 from front panel / IP 20 terminals
III.

2
solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)
$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$
(UNI) -62 g (230) $-60 \mathrm{~g} \quad$ (UNI) -89 g (230) -85 g
EN 61810-1, EN 61010-1

Symbol
MR-41

Connection
MR-41
MR-42

Function

MR-42

- Independent switch units designed for flexible controlling and switching of power circuits
- USS - "Do It Yourself" = it is possible to "click into" different types of switches and signalling units into the basic module
- Units are delivered as components and configured by the user
- 15 types of units: switches, push buttons, signal lights of different colours including flashing lights units are replaceable also for future (for example when an application is changed, extended, etc...)
- It is possible to place up to two units into one MODULE (for example $2 x$ switch, $2 x$ signalling lights or combinations) $=$ saves space in switchboard panels
- 1-MODULE, DIN rail mounting
- Operating temperature $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
- M3 screw with clamp terminals

EAN code
USS-ZM 8595188124577 USS-00 8595188124614 USS-01 8595188124621
USS-02 8595188124638
USS-03 8595188124645
USS-04 8595188124652
USS-05 8595188124669 USS-06/S 8595188124676
USS-06/R 8595188136372
USS-07 8595188124683
USS-08 8595188124690
USS-09 8595188124706
USS-10 8595188124331
USS-11 8595188124348
USS-12 8595188124355
USS-13 8595188124362
USS-14 8595188124898
USS-15 8595188124379
Units

Make your own device USS - easy and intelligent solution!

Supply voltage of the signalling light:
AC 250 V .

SIGNALLING LIGHT
\qquad .71 (1)
High luminescence SMD/LED that illuminates the entire button area surface. Input voltage can be either AC 230 V or AC/ DC 24 V (output light may vary).
Red sig. light is delivered also in a flashing version.Unit: 14.
Colours: red, green, yellow, white, blue
Unit: 10-15

Monitoring relays

Monitoring relays review

Type	$\frac{5}{\square}$	总 $\stackrel{y}{8}$	Secure variables							Nastavení			Description	\％
			$\begin{aligned} & \text { 䙶 } \end{aligned}$	$\begin{aligned} & \text { 总 } \\ & \text { 足 } \end{aligned}$	$\stackrel{\wedge}{\wedge}$	$\stackrel{\rightharpoonup}{v}$	$\frac{\text { 槀 }}{\text { 룬 }}$		른 毫	$\frac{\stackrel{\rightharpoonup}{a}}{\square}$	$\begin{array}{\|l\|l} \hline \frac{n}{0} \\ \text { 耪 } \end{array}$			
HRN－33	${ }^{1-M}$	from monitored	1	AC48－276V	\bullet	\bullet				\bullet			For all types，the delay is adjustable from $0-10$ seconds（to eliminate short－term outages or peaks） The lower voltage level（Umin）is set in \％of the upper level（Umax）	62
HRN34	${ }^{1-M}$	$\begin{gathered} \text { foom } \\ \text { monitored } \end{gathered}$	1	DC6－30V	\bullet	\bullet				\bullet				62
HRN－35	${ }^{1-M}$	$\begin{gathered} \text { from } \\ \text { monitoed } \end{gathered}$	1	AC48－276V	\bullet	\bullet				\bullet				62
HRN－37	${ }^{1-M}$	$\begin{gathered} \text { from } \\ \text { monitioned } \end{gathered}$	1	AC24－150V	\bullet	\bullet				\bullet				62
HRN－63	${ }^{1-M}$	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \text { from } \\ \text { montored } \end{array}$	1	AC48－276V	\bullet	\bullet				\bullet				62
HRN．64	${ }^{1-M}$	$\begin{aligned} & \text { from } \\ & \text { monitoed } \end{aligned}$	1	DC6－30V	\bullet	\bullet				\bullet				62
HRN－67	${ }^{1-M}$	from monitored	1	AC24－150V	\bullet	\bullet				\bullet				62
HRN－41／230V HRN－41／110V HRN－41／400V HRN－41／24	3－M	$\begin{aligned} & \text { AC 2 230V } \\ & \text { AC C 110V } \\ & \text { A } 400 \mathrm{~V} \\ & \text { ACID } 24 V \end{aligned}$	1	$\begin{aligned} & \text { ACDC } \\ & 10-50 \mathrm{~V} \\ & 32-160 \mathrm{~V} \\ & 100-500 \mathrm{~V} \end{aligned}$	\bullet	\bullet				\bullet	\bullet	\bullet	Second relay function（independent／parallel） Galvanically separated power supply from measuring inputs	61
HRN－42／230V HRN－42／110V HRN－42／400V HRN－42／24V	3－M	$\begin{array}{\|c\|} \hline \text { AC230V } \\ \text { ACC110V } \\ \text { AC40V } \\ \text { ACIDC 24V } \end{array}$	1	$\begin{aligned} & \text { ACDC } \\ & 10-50 \mathrm{~V} \\ & 32-160 \mathrm{~V} \\ & 100-500 \mathrm{~V} \end{aligned}$	\bullet	\bullet				\bullet	\bullet	\bullet		61
HRN－43／230V HRN－43／110V HRN－43／400V HRN－43／24	3－M		3		\bullet	－	2 output relays，functions of the second relay may be selected（independ－ ent／parallel） Galvanically separated power supply	68						
HRN－43N／230V HRN－43N／110V HRN－43N／400V HRN－43N／24V	3－M		3	AC3 $\times 88-276 \mathrm{~V}$	\bullet		68							
HRN－5S	${ }^{1-M}$	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \text { from } \\ \text { monitored } \end{array}$	3	AC3 3 300－500			－	\bullet		－			Power supply from all phases，i．e．the relay function is preserved even if one phase fails	64
HRN－5N	${ }^{1-M}$	$\begin{array}{\|c} \hline \text { from } \\ \text { monitored } \end{array}$	3	AC3 172－287V			\bullet	\bullet		\bullet				64
HRN－57	${ }^{1-M}$	$\begin{array}{\|c\|} \hline \text { from } \\ \text { monitored } \end{array}$	3	AC3 3 300－500	\bullet	\bullet				\bullet			Power supply from all phases，i．e．the relay function is preserved even if one phase fails	65
HRN． 5 N	${ }^{1-M}$	$\begin{aligned} & \text { from } \\ & \text { monitoed } \end{aligned}$	3	AC3 172－287V	\bullet	\bullet				\bullet			Power supply L1－N，i．e．the relay also monitors the neutral wire interrup－ tion，replacement for HRN－52	65
HRN－54	${ }^{1-M}$	$\begin{array}{c\|c} \text { from } \\ \text { monitored } \end{array}$	3	AC3 3 300－500	\bullet	\bullet		\bullet		\bullet			Ifthe supply voltage falls below 60% of Un（OFF lower Ievel），the relay will immediately disconnects with no delay Power supply from all phases，i．e．the relay function is preserved even if one phase fails	66
HRN－54N	${ }^{1-M}$	$\begin{gathered} \text { foom } \\ \text { monitored } \end{gathered}$	3	AC3x 172－287V	\bullet	\bullet		－		\bullet			If the supply voltage falls below 60% of Un（OFF lower level），the relay will immediately disconnects with no delay Power supply L1－N，i．e．the relay also monitors the neutral wire inter－ ruption	66
HRN－56／120 HRN－56／208 HRN－56／24 HRN－56／40	${ }^{1-M}$	$\begin{aligned} & \text { from } \\ & \text { monitoed } \end{aligned}$	3			\bullet	\bullet	\bullet		\bullet			Thanks to the power supply from all three phases，the relay is operational even if one phase fails	67
$\begin{aligned} & \text { HRN-56/480 } \\ & \text { HRN-56/575 } \end{aligned}$ 5	${ }^{3-M}$	$\begin{aligned} & \text { from } \\ & \text { montiofed } \end{aligned}$	3	$\mathrm{AC} 3 \times 228-550 \mathrm{~V}$ $\mathrm{AC} 3 \times 345-660 \mathrm{~V}$		－	\bullet	\bullet		\bullet				67

Signal relays

Type	$\frac{5}{\bar{y}}$	嗃0亳亳	Monitoring values				Setting					Description	\％
			$\begin{aligned} & \text { 亮 } \\ & \text { and } \end{aligned}$	気发	入	v	$\frac{\text { 릏 }}{}$	$\begin{aligned} & \text { 资 } \\ & \text { 慈 } \end{aligned}$		－	v		
PR1．32	${ }^{1-M}$	$\begin{gathered} \text { AC24.240VV } \\ \text { DC } 244 \end{gathered}$	1	AC1－20A	\bullet					\bullet		Exceeding the current value－the current flowing through the monitored conductor must not exceed 100 A even on a short－term basis	71
	3－M	$\begin{gathered} \text { ACC30V } \\ \text { ACDCD } 24 V \end{gathered}$	1	AC／DC $0.12-1.6 \mathrm{~A}$ AC／DC $0.375-5 \mathrm{~A}$ AC／DC 1．2－16A	\bullet	－	\bullet	\bullet	\bullet	\bullet	\bullet	The adjustable delay for elimination of short－term outages and peaks for every level Galvanically separated power supply	75
$\begin{array}{\|l\|l\|} \hline \text { PR1-42/230V } \\ \text { PR1-42/24V } \end{array}$	3 －M	$\begin{gathered} \text { ACC23V } \\ \text { ACDCD } 24 \end{gathered}$	1	AC／DC 0．12－1．6A AC／DC $0.375-5$ A AC／DC 1．2－16A	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	－	The adjustable delay for elimination of short－term outages and peaks for every level Galvanically separated power supply	75
PR1－510． 5 PRR－51／1 PR1－51／5 PR1－51／8 PR1－51／16	${ }^{1-M}$	$\begin{gathered} \text { AC42424VVO} \\ \text { DC24V } \end{gathered}$	1	$\begin{gathered} A C 0.05-0.5 \mathrm{~A} \\ A C 0.1-1 \mathrm{~A} \\ \mathrm{ACO} 2-2 \mathrm{~A} \\ \mathrm{Ac} 0.5 \mathrm{~A} \\ \mathrm{Ac}, .8-8 \mathrm{~A} \\ \mathrm{AC1} .6-16 \mathrm{~A} \end{gathered}$	\bullet		\bullet			\bullet		May be used for scanning the current from the current transformer－up to 600 A Power supply is galvanically separated from the measured current	72
PR1－52	${ }^{1-M}$	AC230	1	Ac0．5－25 A	\bullet		\bullet			\bullet		May be used for scanning the current from the external current transformer－up to 600A	73
${ }_{\substack{\text { PRRL．53／} \\ \text { PR1．} 53 / 5}}$	6 －M	$\begin{gathered} \text { Ac/oc } \\ 24240 \mathrm{~V} \end{gathered}$	3	$\begin{gathered} A(3 \times 0.4-1.2 A \\ A C(3 \times 2-6 A \end{gathered}$	\bullet	－	\bullet			\bullet	－	Monitors the drop in the strength of current below the preset value Monitor exceeding the prese value	74

Level switches

Relay for factor $\cos -\varphi$ monitoring

Type	高	苞0亳音	Monitoring values					Setting				Description	율
			$\begin{aligned} & \text { 唯 } \end{aligned}$	울		$\stackrel{9}{3}$							
cos－1／230 COS－1／110V $\cos ^{\cos -1400 \mathrm{~V}}$ cos－1／24V	3－M		3		$0.1-0.99$	\bullet					－	Two output relays，one independent relay for each level Galvanically separated power supply	84

- Monitoring DC / AC 1-phase in 3 ranges
■ Monitoring voltage with 2 independent levels (overvoltage / undervoltage)
- Two versions, HRN-41: Function "HYSTERESIS" a HRN-42: Function "WINDOW"
- "MEMORY" function - manual reset key on frontal panel
- function of second relay (independent/parallel)
- Adjustable delay for short peaks
- Galvanically separated supply voltage
- Output contact: 1x changeover/SDPT 16 A / 250 V AC1 for all monitored levels
- 3-MODULE, DIN rail mounting HRN-42/230V 8594030337653 HRN-42/24V 8594030338070

Weight:
Standards:

239 g (8.4oz.)
EN 60255-6, EN 61010-1
HRN-42 has function "WINDOW", which means that upper level (Umax) and lower level (Umin) are set independently in \% from rated monitores range.
Both types have choice of function MEMORY, in case the relay gets into a faulty state it keeps output in this state until it is reset by button RESET. DIP switch No. 3 can be used to choose if relays should switch individually for each level or in parallel in case any level of voltage is overrun. DIP switch No. 4 serves to set hysteresis which applies when going from normal state to a faulty one.
Relay has protection against polarity reversing for DC voltage or incorrectly chosen AC-DC voltage (this fault is indicated by flasching of both LEDs (LED $<U$ a LED $>U$).

- It serves to control supply voltage for appliances sensitive to supply tolerance, protection of the device against under/over voltage
- HRN-3x is band voltage relay, HRN-6x is over/under voltage relay. For difference - see graph of function

HRN-33, HRN-63 - monitors voltage in range AC 48-276V

- U max and U min can be monitored independently

HRN-34, HRN-64 - like HRN-33, but voltage range is DC $6-30 \mathrm{~V}$

- monitoring of battery circuits $(12,24 \mathrm{~V})$

HRN-35 - like HRN-33, but independent output relays for each voltage level

- switching of other loads possible

HRN-37, HRN-67 - like HRN-33, monitors voltage in range AC $24-150 \mathrm{~V}$

- it is possible to monitor level of overvoltage and undervoltage independently
- Adjustable time delay for all types is $0-10 \mathrm{~s}$ (to eliminate short voltage drops or peaks)
- Voltage Umin adjusted as \% of Umax
- 3-state indication - LEDs indicating normal state and 2 fault states
- Supply from monitored voltage (monitors level of its own supply)
- 1-MODULE, DIN rail mounting

HRN-64 8595188130639 HRN-67 8595188130646

Technical parameters	HRN-33/ HRN-63	HRN-34/ HRN-64	HRN-35	HRN-37/ HRN-67
Supply and measuring				
Terminals:	A1-A2	A1-A2	A1-A2	A1-A2
Voltage range:	AC $48-276 \mathrm{~V} / 50 \mathrm{~Hz}$	DC6-30 V	AC $48-276 \mathrm{~V} / 50 \mathrm{~Hz}$	AC $24-150 \mathrm{~V} / 50 \mathrm{~Hz}$
Burden:	AC max. 1.2 VA	DC max. 1.2 VA	AC max. 1.2 VA	AC max. 1.2 VA
Upper level (Umax):	AC 160-276V	DC 18 -30 V	AC 160-276V	AC $80-150 \mathrm{~V}$
Bottom level (Umin):	30-95\% Umax	35-95\%Umax	30-95\% Umax	30-95\% Umax
Max. permanent:	AC 276 V	DC36V	AC 276 V	AC 276 V
Peak overload <1ms:	AC290 V	DC50 V	AC 290 V	AC290 V
Time delay:	adjustable 0-10s			
Accuracy				
Setting accuracy (mechanical):	5\%			
Repeat accuracy:	<1\%			
Dependance on temperature:	$<0.1 \% /{ }^{\circ} \mathrm{C}$			
Tolerance of limit values:	5\%			
Hysteresis (from fault to normal):	2-6\% of adjusted value (only HRN-33, HRN-34, HRN-35, HRN-37)			
Output - Number of contacts:	1x changeover/ SPDT (AgNi / Silver Alloy)	1x changeover/ SPDT (AgNi / Silver Alloy)	1x chang. for each level of voltage,(AgNi)	1x changeover/ SPDT (AgNi / Silver Alloy)
Current rating:	16 A/ AC1			
Breaking capacity:	$4000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$			
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$			
Switching voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$			
Min. breaking capacity DC:	500 mW			
Output indication:	red/ green LED			
Mechanical life:	3×10^{7}			
Electrical life (AC1):	0.7×10^{5}			
Other information				
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ}\left(-4{ }^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$			
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$			
Electrical strength:	4 kV (supply - output)			
Operating position:	any			
Mounting:	DIN rail EN 60715			
Protection degree:	IP 40 from front panel			
Overvoltage cathegory:	III.			
Pollution degree:	2			
Max. cable size (mm^{2}):	solid wire max. 1×2.5 or 2×1.5, with sleeve max. 1×2.5 (AWG 12)			
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}$ ($\left.3.5{ }^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5{ }^{\prime \prime}\right)$			
Weight:	$61 \mathrm{~g}(2.2$ oz. $)$	73 g (2.6 oz.)	85 g (3 oz.)	61 g (2.2 oz.)
Standards:	EN 60255-6, EN 61010-1			

Symbol

HRN-33, HRN-37.
HRN-63, HRN-67

Connection

HRN-33, HRN-37 HRN-63, HRN-67

Indication LED

Function HRN-33, 34, 35, 37 (band voltage relay)

HRN-33,HRN-37

HRN-35

HRN-34

Legend:
Umax - upper adjustable level of voltage Un - measured voltage
Umin - bottom adjustable level of voltage 15-18 - switching contact of output relay No. 1 25-28 - switching contact of output relay №. 2 LED \geq Un - indication green LED U $\gtrless-$ indication red

Function HRN-63, 64, 67 (over/under voltage relay)

Legend:
Umax - upper adjustable level of voltage Un - measured voltage Umin - bottom adjustable level of voltage 15-18- switching contact of output relay LED U> - indication red LED

Monitoring relay series HRN-3x monitors level of voltage in single - phase circuits. Monitored voltage serves also as supply voltage. It is possible to set two indipendent (all occurrences) levels of voltage, when exceeded the output is activated. HRN-33 and HRN-34 - in normal state the output relay is permanently switched. It switches off when there is a limit settings. This combination of linkage of the output relay is advantageous when the full failure of supply (monitored) voltage is considered to be a faulty state in the same way as a decrease of voltage within the set level. Output relay is in both situations always switched off.
Differently HRN-35 version uses indipendent relay for each level, in normal state it is switched off. If the upper level is exceeded (for example overvoltage) 1 relay switches on, when the bottom level (e.g. undervoltage) is exceeded 2 relay switches. It is thus possible to see the particular faulty state. To eliminate short peaks in the main the time delay, which is possible to be set in range $0-10 \mathrm{~s}$, is used. It functions when changing from normal to faulty state and prevents unavailing pulsation of the output relay caused by parasitive peaks. Time delay doesn't apply when changing from faulty to normal state, but hysteresis (1-6\% depends on the voltage setting) apply. Thanks to changeover contacts it is possible to get other confi gurations and functions according to actual requirements of the application.

Monitoring relay line HRN-6x serves to monitor levels of voltage in single-phase or DC circuits. Monitored voltage is in the same time also supply voltage. It is possible to set two indipendent levels of voltage. When Umax is exceeded, output is activated. In case voltage level falls below Umin, output is deactivated. This combination is advantageous when full absence of supply voltage is understood as faulty state. as well as voltage drop in the frames of set level. To eliminate short voltage peaks in the main there is time delay which can be set in a range of $0-10$ sec. Such delay applies in case of going from overvoltage to undervoltage. In case of returning from undervoltage to overvoltage this delay doesn't apply. Thanks to changeover output contacts it is possible to reach various configurations and functions according to requirements or an application.

- Replacement for HRN-51 and HRN -51N
- Relay monitors phase sequence and failure, exceeding of monitored voltage in 3 phase main
- HRN-55 - supply from all phases, which means that function of relay is applicable also if one phase fails
- HRN-55N - supply L1-N, it means that relay also monitors break of neutral point
- Fixed delay T1 (500 ms) and adjustable delay T2 (0.1-10s)
- Faulty state is indicated by LED and output contact of relay is OFF.
- Output contact: 1 x changeover / SPDT 16 A / 250 V AC1
- 1-MODULE, DIN rail mounting

Relay in 3-phase main monitors correct phase sequence and failure of any phase. Green LED is permanently ON and indicates presence of power supply voltage. In case of phase failure or exceeding voltage level red LED flashes and relay breaks. When changing to faulty state, time delay applies. Time delay setting is set by a potentiometer on front panel of the device. In case of incorrect phase sequence red LED shines permanently and relay is open. In case supply voltage falls below 60% Un (OFF lower level)relay immediately opens with no delay and faulty state is indicated by red LED.

HRN-55: thanks to supply form all phases, this relay is able to stay operational also if one phase is out.
HRN-55N -supply L1-N, means that relay monitor also failure in neutral wire.
EAN code
HRN-55
HRN-55N 8595188137232
Technical parameters

Monitoring terminals:	L1, L2, L3	L1, L2, L3,N
Supply terminals:	L1, L2, L3	L1, N
Voltage:	$3 \times 400 \mathrm{~V} / 50 \mathrm{~Hz}$	$3 \times 400 \mathrm{~V} / 230 \mathrm{~V} / 50 \mathrm{~Hz}$
Level Umax:	125 \% Un	
Level Umin:	75\% Un	
Burden:	max. 2 VA	
Hysteresis:	5\%	
Max. permanent:	AC $3 \times 460 \mathrm{~V}$	AC $3 \times 265 \mathrm{~V}$
Peak overload <1ms:	AC $3 \times 500 \mathrm{~V}$	AC $3 \times 288 \mathrm{~V}$

Time delay T1:
Time delay T2:

> max. 500 ms
> adjustable $0.1-10 \mathrm{~s}$

Number of contacts:
Current rating:
Breaking capacity:
Inrush current:
Switching voltage:
Min. breaking capacity DC:
Mechanical life:
Electrical life (AC1):
Other information

Operating temperature:	$-20^{\circ} \mathrm{C}$ to ${ }^{+} 55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to ${ }^{+} 70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Electrical strength:	$4 \mathrm{kV}($ supply - output $)$
Operating position:	any
Mounting:	DIN rail EN 60715

Function description

Function

- It serves to monitor voltage in a switchboard, protection of devices in 3-phase main
- It monitors value of voltage in 3-phase main
- It is possible to set upper and lower level independently
- Adjustable time delay eliminated short voltage peaks and failures in the main
- The device is supplied from monitored voltage
- Faulty state is indicated by red LED and by breaking output relay contact
- Output contact 1x changeover/ SPDT 8 A /250 V AC1
- Relay doesn't monitor phase sequence
- HRN-57 - supply from all phases, means that relay is functional also in case of failure in one phase
- HRN-57N -supply L1-N, means that relay monitors also failure of neutral wire, replacement for HRN-52
- 1-MODULE, DIN rail mounting

Technical parameters	HRN-57	HRN-57N
Monitoring terminals:	$\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3$	$\mathrm{~L} 1, \mathrm{~L} 2, \mathrm{~L} 3, \mathrm{~N}$
Supply terminals:	$\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3$	$\mathrm{~L} 1, \mathrm{~N}$
Voltage:	$3 \times 400 \mathrm{~V} / 50 \mathrm{~Hz}$	$3 \times 400 \mathrm{~V} / 230 \mathrm{~V} / 50 \mathrm{~Hz}$

	边	退/23V/50
Level Umax:	105-125 \% Un	
Level Umin:	75-95\%Un	
Burden:	max. 2 VA	
Hysteresis:	5\%	
Max. permanent overload:	AC $3 \times 460 \mathrm{~V}$	AC $3 \times 265 \mathrm{~V}$
Peak overload <1ms:	AC $3 \times 500 \mathrm{~V}$	AC $3 \times 288 \mathrm{~V}$
Time delay T1:	max. 500 ms	
Time delay T2:	adjustable 0.1-10 s	
Output		

Output

Number of contacts:	1x changeover/ SPDT (AgNi / Silver Alloy)
Current rating:	8 A/AC1
Breaking capacity:	$2500 \mathrm{VA} / \mathrm{AC1}, 240 \mathrm{~W} / \mathrm{DC}$
Inrush current:	10 A
Switching voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
Min. breaking capacity DC:	500 mW
Output indication:	red LED
Mechanical life:	1×10^{7}
Electrical life (AC1):	1×10^{5}
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to ${ }^{+55^{\circ}}{ }^{\circ}\left(-4{ }^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to ${ }^{+7} 0^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Electrical strength:	4 kV (supply - output)
Operating position:	any
Mounting:	DIN rail EN 60715
Protection degree:	IP 40 from front panel / IP 10 terminals
Overvoltage cathegory:	III.
Pollution degree:	2
Max. cable size (mm^{2}):	$\begin{gathered} \text { solid wire max. } 2 \times 2.5 \text { or } 1 \times 4 \text {, } \\ \text { with sleeve max. } 1 \times 2.5 \text { or } 2 \times 1.5 \text { (AWG 12) } \end{gathered}$
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}$ ($\left.3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5{ }^{\prime \prime}\right)$
Weight:	$68 \mathrm{~g}(2.4$ oz. $) \quad 66 \mathrm{~g}(2.3$ oz. $)$
Standards:	EN 60255-6, EN 61010-1

Function description

Relay in 3-phase main monitors size of phase voltage. It is possible to set two independent voltage levels and thus it is possible to set two independent voltage levels and monitor e.g. undervoltage and overvoltage independently. In normal state when voltage is within set levels, output relay is closed and red LED shines. In case voltage exceeds or falls below the set levels, output relay breaks and red LED shines (LED indicates faulty state - flashes when timing)
In case supply voltage falls below 60% Un (UOFF lower level) relay immediately breaks without delay and faulty state is indicated by red LED.
In case timing is in progress and faulty state is indicated, timing is immediately stopped.

Description

Function

-

- It serves to monitor voltage, phase failure and sequence in switchboards, protection of devices in 3-phase mains
- It is possible to set upper and lower level of monitoring voltage
- Adjustable time delay eliminates short voltage peaks and failures in the main
- Supply is done from monitored voltage
- Faulty state is indicated by red LED and by opening of output relay contact
- Output contact 1x changeover / SPDT 8 A /250 V AC1
- In case supply voltage falls below 60% Un (Uoff lower level) relay immediately opens without delay
- HRN-54 -supply from all phases which means that relay is functional also in case when one phase is faulty
- HRN-54N -supply L1-N, means that relay monitors also failure of neutral wire
- 1-MODULE, DIN rail mounting
Relay in 3-phase main monitors size of phase voltage. It is possible to set two independent voltage levels and thus it is possible to set two independent voltage levels and monitor e.g. undervoltage and overvoltage independently. In normal state when voltage is within set levels, output relay is closed and red LED shines. In case voltage exceeds or falls below the set levels, output relay opens and red LED shines (LED indicates faulty state - flashes when timing).
In case supply voltage falls below 60% Un (UOFF lower level)relay immediately opens without delay and faulty state is indicated by red LED.
In case timing is in progress and faulty state is indicated, timing is immediately stopped.

Electrical life (AC1):
Operating temperature
Electrical strength:
Operating position:
Mounting:
Protection degree:
Overvoltage cathegory:
Pollution degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:
Standards:
$69 \mathrm{~g} \quad 67 \mathrm{~g}$
EN 60255-6, EN 61010-1

Function description

- Relay monitors phase sequence and failure (e.g. control of correct motor winding etc.)
- Relay is designated for monitoring of 3-phase mains
- Supply from all phases which means that relay is functional also in case of one phase failure
- Supply and monitored supply Un:

1-MODULE	3-MODULE
HRN-56/208-3x120V	HRN-56/480-3x480 V
HRN-56/208-3x208V	HRN-56/575-3×575V

- Fixed time delay T 1 (500 ms) and adjustable time delay T2 ($0-10 \mathrm{~s}$)
- Faulty state is indicated by LED and by opening of output relay contact
- Output contact 1x changeover/SPDT $8 \mathrm{~A} / 250 \mathrm{~V}$ AC1
- 1-MODULE, 3-MODULE, DIN rail mounting

Technical parameters	HRN-56					
	120	208	240	400	480	575
Monitoring terminals:	L1, L2, L3					
Supply terminals:	L1, L2, L3					
Supply/measured voltage:	$3 \times 120 \mathrm{~V} / 50 \mathrm{~Hz} \quad 3 \times 208 \mathrm{~V} / 50 \mathrm{~Hz} 3 \times 240 \mathrm{~V} / 50 \mathrm{~Hz} 3 \times 400 \mathrm{~V} / 50 \mathrm{~Hz} 3 \times 480 \mathrm{~V} / 50 \mathrm{~Hz} 3 \times 575 \mathrm{~V} / 50 \mathrm{~Hz}$					
Level Umin:	adjustable $70-95 \%$ Un					
Level Uoff:	60% Un					
Burden:	max. 2 VA					
Hysteresis:	5\%					
Max. permanent overload:	AC $3 \times 160 \mathrm{~V}$			AC $3 \times 460 \mathrm{~V}$	AC $3 \times 550 \mathrm{~V}$	AC $3 \times 660 \mathrm{~V}$
Peak overload <1s:	AC $3 \times 180 \mathrm{~V}$			AC $3 \times 500 \mathrm{~V}$	AC $3 \times 600 \mathrm{~V}$	AC $3 \times 700 \mathrm{~V}$

Peak overload <1s:	AC $3 \times 180 \mathrm{~V}$	AC $3 \times 300 \mathrm{~V}$	AC $3 \times 500 \mathrm{~V}$	AC $3 \times 600 \mathrm{~V}$	AC $3 \times 700 \mathrm{~V}$
Time delay T1:	max. 500 ms				
Time delay T2:	adjustable 0-10 s				

Function description

Relay in 3-phase main monitors correct phase sequence and phase failure. Green LED shines permanently and indicates energization. In case of phase failure red LED flashes and relay turns off. When changing to faulty state, time delay applies - delay setting is done by potentiometer on the front panel of the device. In case of incorrect phase sequence, red LED shines permanently and relay is open. In case supply voltage falls below 60% Un (Uoff lower level) relay immediately opens with no delay and faulty state is indicate by red LED.
HRN-56: Thanks to supply from all phases, relay is functional also in case of one phase failure.

Symbol Connection

Function

Function

Phase sequence

Asymmetry - phase failure

Legend:
L1, L2, L3-3-phase voltage
RESET - press of the button on frontal panel
t1-time delay, fixed
t2 - time delay, adjustable 0-10 sec
15-18 output relay 1
25-28 output relay 2
LED $\gtrless U$ - indication overvoltage / undervoltage
Selection of 2nd relay function:
In order to monitor 2 levels of voltage, it is possible to select if output relay will respond to each level individually (see the diagram) or both relays will switch in parallel way (see diagram"phase sequence").
Selection via DIP switch.

Legend:
L1, L2, L3 - 3-phase voltage
RESET - press of the button on frontal panel
t1-time delay, fixed
t2 - time delay, adjustable 0-10 sec
15-18 output relay 1
25-28 output relay 2
LED \triangleq indication of phase sequence

Selection of 2nd relay function:

The function is not implied when monitoring phase sequence, the relays are switched in parallel way.

Legend:
L1, L2, L3 - 3-phase voltage
RESET - press of the button on frontal panel
t1 - time pause, fixed
t2 - time pause, adjustable 0-10 sec
人 - adjustable asymmetry 5-20\%
15-18 output contact of relay 1
25-28 output contact of relay 2
LED $\boldsymbol{\lambda}$ - asymmetry indicator
Selection of 2nd relay function:
The function is not implied when monitoring phase sequence, the relays are switched in parallel way.
DIP switch is ignored.

Function description

Relay is designated to monitor 3-phase circuits. Type HRN-43N controls voltage towards neutral wire, type HRN-43 controls interphase voltage. Relay can monitor voltage in two levels (overvoltage/ undervoltage), phase assymetry, sequence and failure. Each faulty state is indicated by individual LED. By DIP switch ($N o .3$) it is possible to define function of the other relay - independent function (1 x for overvoltage, $1 x$ for undervoltage) or in parallel. Time delays t1(fixed) - when changing from faulty to normal state or when de-energized and t2 (adjustable) when changing from normal to faulty state. These delays prevent incorrect conduct and oscillation of output device during short voltage peaks in the main or during gradual voltage decline into normal.
Voltage control
Set upper level Umax in range 138-276V (or 240-480V for HRN-43) and lower level Umin in range 35-99\% Umax. In case any phase passes this range, after a delay which eliminated short voltage peaks, contact opens. Output contact again switches after returning back into monitored voltage range and exceeding fixed hysteresis (which is adjustable in two values by DIP switch).
Phase sequence
Monitors correctness of phase sequence. In case of unwanted change output contact breaks. In case of energization of a device with incorrect phase sequence, contact stays opened.
Asymmetry
Rate of assymetry between individual phases is set in a range of 5-20\%. In case set asymmetry is exceeded, output relay breaks and LED indicating asymmetry shines. Delays t 1 , t 2 and hysteretic are applicable when returning to normal state.

MPS-1 8595188145978

Technical parameters	MPS-1
Supply voltage:	AC $3 \times 400 / 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Supply voltage tolerance:	$+20 \%,-75 \%$
Power consumption:	max. $1.0 \mathrm{VA} / 0,5 \mathrm{~W}$
Indication:	
LED not illuminated:	$0 \ldots 50 \mathrm{~V} / 45 \ldots \mathrm{FV}$
LED illuminated:	
- yellow	$50 \ldots 207 \mathrm{~V} / 195,5 \ldots . .45 \mathrm{~V}$
green	$207 \ldots 264,5 \mathrm{~V} / 253 \ldots 195,5 \mathrm{~V}$
- red	$264,5 . .276 \mathrm{~V} / 276 \ldots 253 \mathrm{~V}$
Other information	
Design:	1 module
Mounting:	DIN rail EN60715
Pracovní poloha:	any
Coverage:	Panel IP40, terminals IP10
Overvoltage category:	III.
Contamination level:	2
Working temperature:	$-20 \ldots+55^{\circ} \mathrm{C}$
Storage temperature:	$-30 \ldots+70^{\circ} \mathrm{C}$
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}$
Weight:	58 g
Standards:	EN60947-1, EN60947-5-1

After connecting the supply voltage, the LED illuminates - the color corresponds to the voltage size of individual phases. If the phase voltage drops under 40 V (phase outage), the corresponding LED is not illuminated.

Description of function

Connection

Description of device

- Used for optical signaling of the voltage level in three phases
- Each phase features LED signaling broken down by color into voltage levels: - voltage in tolerance of $+/-15 \%$ - green
- overvoltage - red
- undervoltage - yellow
- voltage < 50V - LED not illuminated
- Four-wire connection - L1, L2, L3, N
- Monitors phase voltages against neutral wire
- Not dependent upon order of phases
- Four-wire connection - L1, L2, L3, N
- In 1-MODUL design, DIN rail mounting

- Current transformer is a part of the product. Inside this transformer there is a wire which senses the volume of flowing current
- This construction reduces thermal stress of product when compared with conventional solutions with inbuilt shunt, and increases current range up to 20 Amps, and galvanically separates monitored circuit
- For heating bars in sliding rails, heating cables, indication of current flow, controlling of 1-phase motor consumption ...
- Universal supply AC 24-240 V and DC 24V
- Supply is galvanic separated from measuring current
- Current exceeding - current flowing through monitored wire must not exceed 100 A
- Output contact: 1x changeover/SPDT 8 A
- Clamp terminals
- 1-phase, 1-MODULE, DIN rail mounting

Technical parameters	PRI-32
Supply circuit	
Supply terminals:	A1-A2

Voltage range:

Burden:

Operating range:
Measuring circuit
Current range:
Current adjustment:
Accuracy
Setting accuracy (mechanical):
Repeat accuracy:
Temperature dependancy:
Limit values tolerance:
Overload capacity:

Output

Number of contacts:
Current rating:
Breaking capacity:
Output indication:
Other information
Operating temperature:
Storage temperature:
Electrical strength:
Operating position:
Mounting:
Protection degree:
Overvoltage cathegory:
Pollution degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:

Dimensions:

Weight:
Standards:

A1-A2
AC 24-240 V, DC 24 V (AC $50-60 \mathrm{~Hz}$)

$$
\max .1 .5 \mathrm{VA}
$$

$-15 \% ;+10 \%$

1-20 A (AC 50 Hz)
potentiometer

5\%
$<1 \%$
$<0.1 \% /{ }^{\circ} \mathrm{C}$
5\%
max. $100 \mathrm{~A} / 10 \mathrm{~s}$

1x changeover/ SPDT (AgNi / Silver Alloy)
8A/AC1
2500 VA / AC1, 240 W / DC
red LED
$-20^{\circ} \mathrm{C}$ to $+55^{\circ}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
4 kV (supply - output)
any
DIN rail EN 60715
IP 40 from front panel / IP 10 terminals
III.

2
solid wire max. 2×2.5 or 1×4,
with sleeve max. 1×2.5 or 2×1.5
(AWG 12)
$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$
68 g (2.4 oz.)
EN 60255-6, EN 61010-1

Description

Symbol
Connection

Function

Monitoring relay PRI-32 serves to monitor current level in single phase AC circuits. Due to its fluent adjustment of release current, it is predestined for applications with necessity of current flow indication, and can be used as precedence relay. Output relay is off in normal state. In case the set current level is exceeded, it switches. Multivoltage supply is an advantage.

- Relay is designated for:
- distant device diagnostic (short circuit, take-off increasing)
- preferred (priority) relay - two appliances (boiler and floor heating) operating on one phase, but never run together - prevention against current overload and circuit breaker tripping. Enables to save your main breaker expenses. - current tranzit indicator - informs about heating activation, ceramic hob, ventilator. ...
- changing over of appliances according to inverter's (converter) output by photocell applications
- NEW - hole for threaded conductor passes through the body of device
- Part of device is current transformer, which is sensing size of current in threaded conductor
- Possible to use also for sensing of current up to 600A from external current transformer
- Slight setting (by potentiometer) of tripping current - range AC $0.5 \ldots .25 \mathrm{~A}$
- Slight setting (by potentiometer) of delay - adjustable in range 0.5..... 10 s
- Supply voltage AC 230 V
- Output contact 1x changeover /SPDT 8A (AC1)

EAN code
PRI-52 8595188136556

- 1-phase version, 1-MODULE, DIN rail mounting, clamp terminals

Technical parameters	PRI-52
Supply	
Supply terminals:	A1 -A 2
Voltage range:	AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
Tolerance of voltage range:	$-15 \% ;+10 \%$
Burden (apparent):	$\max .5 \mathrm{VA}$
Burden (loss):	max. 1.4 W

Measuring circuit:
Current range:
Maximal permanent current:
Inrush overload <1s:
Current adjustment:
Time delay:
Accuracy
Setting accuracy (mechanical):
Repeat accuracy:
Limit values tolerance:

AC 0.5 ... $25 \mathrm{~A} / 50 \mathrm{~Hz}$
25A
100 A
potentiometer
adjustable 0.5 ... 10 s
10\%
<1\%
$<0.2 \% /{ }^{\circ} \mathrm{C}$
10%
0.25A
1x changeover /SPDT (AgNi/Silver Alloy)
8 A/AC1
2500 VA / AC1, $240 \mathrm{~W} / \mathrm{DC}$
red LED

Switching power:
Output indication:
Other information
Operating temperature:
Storing temperature:
Electrical strengh:
Operating position:
Mounting:
Protection degree:
Overvoltage cathegory:
Pollution level:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:
$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
4 kV (supply - output)
any
DIN rail EN 60715
IP40 from front panel / IP10 terminals
III.

2
max. 2×2.5, max. $1 \times 4 /$ with sleeve max. 1×2.5, max. 2×1.5 (AWG 12)
$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$
64 g (2.26 oz.)
Standards:
EN 60255-6, EN 61010-1

Connection example: PRI-52 with current transformer for increasing of current range.

Functions

Monitoring relay PRI-52 serves for monitoring of current level in 1-phase AC circuits. Slight setting of release current level designates this relay for many various applications. Output relay is in normal status switched off. When set current level is overrun, relay get closed after preset delay. By return from error to normal status is used hysteresis.
PRI-52 range is possible to increase with external current transformer.
Adventage of PRI-52 is that the hole for threaded conductor is located under the level of covering in the switchboard - thanks that, threaded conductor is not accessible for unwanted manipulation.

After the supply voltage is connected the green LED is on.
UNDER function:
If the strength of the monitored current in all phases exceeds the preset level I, the relay is triggered and the red LED is off. If the strength of the monitored current drops in any phase below the level I, the relay is disconnected after the preset delay timing elapses and the red LED goes on. The red LED flashes during the delay.
If the strength of the monitored current returns above the levelI + difference, the relay is triggered without delay and the red LED goes off.

OVER function:

If the strength of the monitored current is lower in all phases than the preset level I, the relay is disconnected and the red LED is off.
UNDER If the strength of the monitored current exceeds in any phase the level I, the relay is triggered after the preset delay timing elapses and the red LED goes on. The red LED flashes during the delay.

If the strength of the monitored current again drops below the level I - difference, the relay is disconnected without delay and the red LED goes off.

- To monitor overloading / discharge (machine, motor...), load sensing, diagnostics of remote device (interrunption, short circuit, current cunsumption increase...)
- Monitors AC/DC 1-phase current in 3 ranges
- Monitoring adjusted current in 2 independent levels
- PRI-41: "HYSTERESIS" function and PRI-42: "WINDOW" function
- function of 2nd relay (independent/parallel):
"MEMORY" function - manual reset.
"RESET" button on the frontal panel
- Adjustable time delay for each level
- Galvanically separated supply
- Output contact: 1x changeover/ SPDT 16 A / 250 V AC1 for each current level
- 3-MODULE, DIN rail mounting

Relay is delivered in two versions - according to setting and level monitoring .
PRI-41 has function hysteresis, which means that you set only upper level (Imax) and lower level is set in \% from upper level. Therefore when upper level is changed, lower level changes automatically. PRI-42 has function "WINDOW", which means that you set upper level (Imax) and lower level (Imin) individually in \% of rated monitored range.
Both types have selectable function MEMORY. In case the relay gets to faulty state, this function leaves relay in this state until it is reseted by RESET button. DIP switch No. 3 can be used to choose if output relay should switch for each level separatelly, or in parallel in case any current level is exceeded. DIP switch No. 4 serves to set hysteresis which applies when changing from faulty to normal state. Relay is protected against re-poling of DC current, or wrong AC/DC current (this fault is indicated by LED <la LED >| common flashing).

- Accessory to monitoring relay PRI series, for extension of max. controlled current max. cable 35 mm (1")
- Max. cable size:
- solid conductor: max. 6 mm²
- wire max. 4 mm2
- Bus-bar to max. dimension $40 \times 10 \mathrm{~mm}\left(2^{\prime \prime} \times 0.4^{\prime \prime}\right)$
- Frenquency: $50-60 \mathrm{~Hz}$
- Constant overload capacity: 1.2 x In
- Output current:0-5A
- 1-phase, DIN rail or panel mounting

Technical parameters	SR051	SR101	SR151	SR200	SR250	SR300	SR400	SR600
Max. wire diameter:	$\varnothing 22$	$\varnothing 22$	¢ 22	$\varnothing 23$	$\varnothing 23$	$\varnothing 35$	$\varnothing 35$	$\varnothing 35$
Max. bus-bar profile:	-	-	-	30x10	30×10	40×10	40x10	40×10
Primary current (A):	50	100	150	200	250	300	400	600
	Rated capacity (VA):			Rated capacity (VA):		Rated capacity (VA):		
Accuracy class:								
0.5	-	2	3	4	6	4	8	12
1	1.25	2.5	4	7	9	8	12	15
3	1.5	3.5	5	8.5	11	12	15	15
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$			$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$		$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$		
Storage temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F}\right)$			$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto}+158{ }^{\circ} \mathrm{F}\right)$		$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{Fto}+158^{\circ} \mathrm{F}\right)$		

HRH-5/UNI

Technical parameters	HRH-5
Functions:	2
Supply terminals:	A1-A2
Voltage range:	24... 240 V AC/ DC ($\mathrm{AC} 50-60 \mathrm{~Hz}$)
Input:	max. 2 VA
Toleration of voltage range:	-15\%; +10\%
Measuring circuit	
Sensitivity (input resistance):	adjustable in range $5 \mathrm{k} \Omega-100 \mathrm{k} \Omega$
Voltage n electrodes:	max. AC 3.5 V
Current in probes:	$\mathrm{AC}<0.1 \mathrm{~mA}$
Time response:	max. 400 ms
Max. capacity of probe cable:	800 nF (sensitivity $5 \mathrm{k} \Omega$), 100 nF (sensitivity $100 \mathrm{k} \Omega$)
Time delay (t):	adjustable, 0.5-10 sec
Time delay after switching on (t) :	1.5 sec
Accuracy	
Accuracy in setting (mechanical):	$\pm 5 \%$
Output	
Number of contacts:	1x changeover/ SPDT (AgNi / Silver Alloy)
Current rating:	8A/AC1
Switching voltage:	$2500 \mathrm{VA}, 240 \mathrm{~W}$
Switched voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
Min. switched output DC:	500 mW
Mechanical life (AC1):	1×10^{7}
Electrical life:	1×105
Other information	
Operational temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$
Storing temperature:	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Electrical strenght:	3.75 kV (supply - sensors)
Operational position:	any
Mounting:	DIN rail EN 60715
Protection degree:	IP 40 from font panel / IP 10 terminals
Overvltage category:	III.
Pollution degree:	2
Profile of connecting wires (mm^{2}):	AWG 10 (2.5 mm 2$)$
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}$ (3.5 " $\left.\times 0.7^{\prime \prime} \times 2.5{ }^{\prime \prime}\right)$
Weight:	72 g (2.5 oz.)
Standards:	EN 60255-6, EN 61010-1
Recommended measuring probes:	pg. 83

Symbol

- Relay is designed for monitoring levels in wells, basins, reservoirs, tanks....
- In one device you can choose the following configurations:
- one-level switch of conductive liquids (by connecting H and D)
- two-level switch of conductive liquids
- One-state device monitors one level, two-state device monitors two levels (switches on one level and switches off on another level)
- Choice of function PUMP UP, PUMP DOWN
- Adjustable time delay on the output (0.5-10s)
- Sensitivity adjustable by a potentiometer (5-100k $)$
- Measuring frequency 10 Hz prevents polarization of liquid and raising oxidation of measuring probes
- Galvanically separated supply voltage UNI 24.. 240 VAC/DC
- Output contact 1xchangeover/SPDT 8A/250V AC1
- In 1-module type, mounting onto a DIN rail

Device description

Connection

Function

Relay is designated for monitoring of levels of conductive liquids with possibility of functions: PUMP UP or PUMP DOWN. To prevent polarization and liquid electrolysis of liquid, and undesirable oxidation of measuring probes, alternating current is used. For measuring use three measuring probes: H- upper level, D- lower level, C - common probe. In case you use a tank made of a conductive material, you can use it as probe C . In case you require monitoring of one level only, it is neccessary to connect inputs H and D and connect them to one probe - in this case sensitivity is lowered by half (2.5... $50 \mathrm{k} \Omega$). Probe (can be connected with a protective wire of supply system (PE). To prevent undesirable switching out output contacts by various influences (sediment on probes, humidity...) it is possible to set sensitivity of the device according to conductivity of monitored liguid (corresponding to "resistance" of liquid) range 5 up to 100k』. To reduce infuences of undesirable switching of output contacts by liquid gorgle in tanks, it is possible to set delay of output reaction 0.5-10s.

HRH-1/230V 8594030337783
HRH-1/24V 8594030338209

Technical parameters	HRH-1
Function:	3
Supply terminals:	A1-A2
Voltage range:	AC230V, AC/DC 24V (galvanicaly separated)
Burden:	or AC 110V(AC 50-60Hz)
Operating range:	max. 4.5 VA
Supply voltage tolerance:	-15\%; +10\%
Measuring circuit	
Hysteresis (input - opening):	in an adjustable range $5 \mathrm{k} \Omega-100 \mathrm{k} \Omega$
Voltage on electrode:	max. AC 5 V
Current in probes:	$\mathrm{AC}<1 \mathrm{~mA}$
Time reaction:	max. 400 ms
Max. cable capacity:	4 nF
Time delay tD:	adjustable $0.5-10$ sec
Time delay tH:	adjustable $0.5-10$ sec
Accuracy	
Setting accuracy (mech.):	$\pm 5 \%$
Output	
Number of contacts:	$2 x$ changeover/ DPDT (AgNi / Silver Alloy)
Current rating:	$16 \mathrm{~A} / \mathrm{AC1}$
Breaking capacity:	$4000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$
Switching voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
Min. breaking capacity DC:	500 mW
Mechanical life:	3×10^{7}
Electrical life (AC1):	0.7×10^{5}
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Electrical strength:	4 kV (supply - output)
Operating position:	any
Mounting:	DIN rail EN 60715
Protection degree:	IP 40 from front panel / IP 20 terminals
Overvoltage cathegory:	III.
Pollution degree:	2
Max. cable size (mm^{2}):	solid wire max. 1×2.5 or $2 \times 1.5 /$ with cavern max. 1×1.5
Dimensions:	$90 \times 52 \times 65 \mathrm{~mm}\left(3.5{ }^{\prime \prime} \times 2^{\prime \prime} \times 2.6^{\prime \prime}\right)$
Weight:	240 g (8 oz.)
Standards:	EN 60255-6, EN 61010-1
Measuring sensors:	pg. 83

Measuring probes

There can be any measuring probe (any conductive contact, it is recommended to use brass or stainless steel).
The probe wire does not need to be shielded, but it is recommended. When using a shielded wire, the shielding is connected to terminal S.

- Used to check the level in wells, reservoirs, tanks, pools, tankers, containers, etc.
- Within the framework of a single device, the following configurations can be selected (see functions graph): - two separate level switches
- two probes in one tank
- filling tank from well
- Single-state monitors one level (full or empty tank), double-state monitors two levels (switches on upon one level and switches off upon the second)
- DIP switch on front panel is used to choose function (see functions graph):

$$
\begin{aligned}
& \text { - pumping in } \\
& \text { - pumping out } \\
& \text { - over-pumping }
\end{aligned}
$$

- Option of setting time delay for reacting to the output upon a change in level, any type of delay by DIP switch
- Sensitivity adjustable by potentiometer (probe resistance based on fluid)
- The measuring frequency 500 Hz prevents fluid polarization and oxidation increase of measured probes
- Galvanically separated supply AC $230 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}$ or AC 110 V
- Output contact $2 x$ switches $16 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC1}$
- In 3-MODULE design, fixing to DIN rail

Description and importance of DIP switches

Function	$2 x$	\square	$1 x$	2 separate tanks
Input inverse OFF	\square	ON	change of function of relay D	
Delay type D	ta	\square	tb	relay D - delayed close
Delay type H	ta	\square	tb	

Functions

Two probes in single tank

The relay, which is used to control the level liquids conductive (water, chemical solutions, food, etc.).
In this principle, it goes on about the measurement of liquids by measuring probes. As the measuring used signal is $5 \mathrm{~V} \mathrm{AC} / 500 \mathrm{~Hz}$. Using an AC signal prevents the the increasing oxidation of probes and unwanted polarization and electrolysis liquid. During depending on the DIP settings configurations, switches can control two independent levels or use a combined function for one level (see diagram of functions).
The relay is equipped with regulation of the sensitivity to to liquid resistance. It's also possible to eliminate some of the unwanted switching in the sensitivity settings according to specific conditions (for example, pollution probe sediments, humidity, etc.). It's also possible for each probe to set the delay in the range of 0.5-10s, and using the DIP switch type delay (when you turn the relay on and off, depending on application).

Example of usage:

For controlling two independent tanks

For controlling the level combination of upper and bottom probe

Output relays for pump control or other output devices, Selecting contacts is depending on the selected function

Note:
As a common probe, it could be used with an advantage such as metal pipes, tanks, etc.
Due to the isolation of probes from a supply voltage, and the measured voltage which is up to 5 V , it is possible to connect probes using standard communication cables.

HRH-6 block connecting

*By HRH-6/DC, incoming supply is connected on terminals +Un and - Un.

Functions

This device monitors level of a conuctive liquid in a tank by using six single probes or one 6-fold probe. In case you use a tank made of a conductive material, it is possible to use it as a common probe C. This common probe is connected to a pole of supply (for fire-engines it means its body) in case of supply voltage 12...24VDC.
In case of supply voltage 230VAC, the circuits are galvanically separated from the main.
The device is controlled by a three-position switch PUMP UP/OFF/ PUMP DOWN. After switching into a position PUMP UP or PUMP DOWN, red LED1 shines and then also LED2...LED6 according to liquid level. Output relay has 2 selectable functions.
Funtion setting is done by a jumper on basic board of HRH-6.
Function 1: (for use in fire-engines) - jumper is applied. In case of function PUMP UP and level reaching L5, the relay controlling e.g. acustic signalization, permanently closes and indicated full tank. In case of PUMP DOWN function and level dropunder level L3, relay priodically switches and under L2 it switches permanently (indicates almost empty tank).
Function 2: (for keeping liquid level) - jumper is not applied. In case of PUMP UP, sensor is switched until liquid reaches level L5. Then relay opens and switches again in case the lliguid level falls under level L1. In case of PUMP DOWN - relay is switched until liquid falls under level L1. Then relay opens and switches again on level L5.
To eliminate LED flashing while level gurgle it is possible to delay reaction of probes (set delay $1 . .10 \mathrm{~s}$). According to conductivity of liquid it is possible to set sensitivity of probes (corresponding to "resistance" of liquid).

Function

Function PUMP UP

Function PUMP DOWN

$\begin{array}{ll}\text { EAN code } & \\ \text { HRH-4/230V } & 8595188117517 \\ \text { HRH-4/24V } & 8595188117500\end{array}$

HRH-4/24V 85958 It
 Technical parameters

Function:
Voltage range:
Burden:
Operating range:
Measuring circuit
Sensitivity (input resistance):
Voltage n electrodes
Current on probes:
Time response:

Max. capacity of probe cable:
Time delay (t):
Time delay (t):
Accuracy
Setting accuracy (mech):
Output

Number of contacts:	$4 \times$ switching
Rated thermal current:	25 A
Loading in AC3:	$5.5 \mathrm{~kW} / 400 \mathrm{~V}$
Mechanical life:	3×10^{6}
Other information	
Operation temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Electrical strength (supply-output):	4 kV, galvanically insulated
Operating position:	any
Protection degree:	$\mathbb{I P} 55$
Pollution degree:	2
Dimensions:	$160 \times 135 \times 83 \mathrm{~mm}\left(6.3^{\prime \prime} \times 5.3^{\prime \prime} \times 3.3^{\prime \prime}\right)$
Weight:	$834 \mathrm{~g}(29.4$ oz. $)$
Standards:	$\mathrm{EN} 60255-6, \mathrm{EN} 61010-1$

HRH-4
2
AC/DC 230 V or AC/DC 24 V (AC $50-60 \mathrm{~Hz}$)
7VA
$-15 \% ;+10 \%$
adjustable in range $5 \mathrm{k} \Omega-100 \mathrm{k} \Omega$
max. AC 3.5 V
$\mathrm{AC}<0.1 \mathrm{~mA}$
max. 400 ms
800 nF (sensitivity $5 \mathrm{k} \Omega$), 100 nF (sensitivity $100 \mathrm{k} \Omega$)
adjustable, $0.5-10 \mathrm{sec}$
1.5 sec
$\pm 5 \%$

4x switching
$5.5 \mathrm{~kW} / 400 \mathrm{~V}$
$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ 4 kV , galvanically insulated

IP 55
$160 \times 135 \times 83 \mathrm{~mm}\left(6.3^{\prime \prime} \times 5.3^{\prime \prime} \times 3.3^{\prime \prime}\right)$
EN 60255-6, EN 61010-1

Connection

Function description

1) PUMP UP - in case the level falls under a lower limit (sensor D), a relay switches and a pump pumps a liquid up until it reaches an upper limit (probe H), then a relay opens and a pump stops pumping. When a level reaches a lower limit again, all process is repeated.
After the device is energized, relay automatically closes and a pump pumps liquid to upper limit.
2) PUMP DOWN - in case a level reaches over an upper limit, a relay closes and a pump pumps liquid down. In case a level reaches a lower limit, a relay opens and a pump stops pumping.
When energized, a relay is in an open state and a pump operates only after an upper limit is exceeded.
3) In case you combine inputs H and D and connect them to one probe, the device will keep only one level (upper and lower limit will become one).
In function PUMP UP relay closes in case the level falls under a probe level. A pump pumps liquid up and in case the level reaches a probe level, a relay opens and a pump stops.
The level is kept in a small range around the probe.
In function PUMP DOWN relays closes in case a level reaches a probe level. A pump pumps down until the level reaches a probe, then relay opens and pump stops.

EAN code
SHR-1-M 8595188110105
SHR-1-N 8595188111379

EAN code

SHR-3 8595188111270

SHR-1-M: brass sensor SHR-1-N: stainless steel sensor

- Sensor to control flooding
- Electrode with diametr $4 \mathrm{~mm} / 0.2^{\prime \prime}$ is placed in plastic cover
- Panel or to holder mounting
- Conductor is connected to terminal board, shrink bushing for feeder place insulation is a part of device
- Max. wire profile: $2.5 \mathrm{~mm}^{2}$ (AWG10)
- Installation: after connecting a wire to the sensor, run the shrink bushing over the wire onto the sensor.
- Heat the sensor and by shrinking the connection of sensor and wire will be hermetical
- Weight: 9.7 g (0.3 oz.)
- Operating temperature: $-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
- Total sensor lenght: $65.5 \mathrm{~mm} / 2.58^{\prime \prime}$

Level probe SHR-2

- Detection sensor is electrode, which in connection with switchable device is used for level detection for example in wells,tanks,...
- To be ued in electric conductive fluids and mechanically polluted fluids with temperature: $+1^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(33.8^{\circ} \mathrm{F}\right.$ to $\left.176^{\circ} \mathrm{F}\right)$ stainless steel one-pole electrode reside in PVC cover, intended for tank wall mounting or mounting by socket
- To ensure corret function of the sensor, it is necessary to have the electrode without dirt which could disable the connection of the electrode and fluid and thus lead to malfunction
- Max. wire profile: $2.5 \mathrm{~mm}^{2}$ (AWG10)
- Recomended wire ÖLFLON FEP 1x1.0 BK
- Installation:
- conductor wire is connected by feazing of two brass screws to stainless steel electrode
- conductor is caulked by bushing Pg7 with protection degree IP68
- Weight: $48.6 \mathrm{~g} / 1.7 \mathrm{oz}$.
- Dimensions: max. diameter $21 \mathrm{~mm} / 0.8^{\prime \prime}$, lenght $96 \mathrm{~mm} / 3.8^{\prime \prime}$

Level probe SHR-3

- Stainless probe to be used into demanding industrial environments, designated for screwing into tank wall or cover
- The probe is installed in horisontal, vertical or in sidelong position on tank side or in tank cover. Installation is done by soldering or by fixing nut. It is necessary to use $24 \mathrm{~mm}\left(1^{\prime \prime}\right)$ screw. It is necessary to use an adequate torque with regards to a seal and operational overpressure in a tank
- Sensor has connecting wire - lenght 3 m , which is connected to sensor to scan electrode and sensor bushing connecting wire is double-wire PVC AWG $18\left(0.75 \mathrm{~mm}^{2}\right)$, connection of wires: brown - scan electrode, blue - sensor bushing
- Connection M18x1.5 screw
- Protection degree IP 67
- Sensor weight without cable: 100 g (3.3 oz .)
- Operating surroundings: place without the danger of detonation, temperature on screw: max. $95^{\circ} \mathrm{C} / 203^{\circ} \mathrm{F}$
- Pressure immunity: on $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F} 4 \mathrm{MPa}$, on $95^{\circ} \mathrm{C} / 203^{\circ} \mathrm{F} 1.5 \mathrm{MPa}$
- Weight: 239 g (8.4 oz .)
- Material: bushing and sean electrode: stainless steel W.Nr. 1.4301, insulation insert of electrode: PTFE
- Internal material: self- extinguishing epoxide resin
- Operating temperature: $-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
- Total sensor lenght: $65.5 \mathrm{~mm} / 2.58^{\prime \prime}$

Dimensions

- Relay monitors phase shift between current and voltage $-\cos -\varphi$ in 3-phase and also 1-phase mains for monitoring overload/unloading of motors
- Supply set $3 x 400 \mathrm{~V}$
- Function "MEMORY" - manual reset - button on front panel
- It is possible to connect current transformer in front of the device. This enables increase of current range
- 2 output relays, independent for each level
- Adjustable delay to eliminate short peak overloading
- Adjustable range and bottom level $\cos -\varphi$, of power factor between 0.1-0.99
- Adjustable delay to eliminate starting of motor
- Selectable hysteresis 5 or 10\%
- Galvanically separated supply AC $230 \mathrm{~V}, ~ A C 400 \mathrm{~V}$ or $\mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}$
- Output contact: $2 x$ changeover/DPDT 16 A / 250 V AC1
- 3-MODULE, DIN rail mounting

Technical parameters

Supply

Supply	
Supply terminals:	A1-A2
Voltage range:	AC $230 \mathrm{~V}, \mathrm{AC} 400 \mathrm{~V}$ or $\mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}(\mathrm{AC} / 50-60 \mathrm{~Hz})$
Burden:	max. 4.5 VA
Operating range:	$-15 \% ;+10 \%$
Measuring	
Voltage set:	$3 \times 400 \mathrm{~V} / 50 \mathrm{~Hz}$
Terminals:	$\mathrm{L1,L2,L3,B1}$
Upper level cos- φ :	adjustable $0.1-0.99$
Bottom level cos- $\varphi:$	adjustable $0.1-0.99$
Max. permanent voltage:	(input L1, L2, L3) AC $3 \times 460 \mathrm{~V}$
Current range:	$0.1-16 \mathrm{~A}$
Current overloading:	$20 \mathrm{~A}(<3$ sec.)
Hysteresis:	adjustable 5% or 10%
Time delay t1:	adjustable $0.5-30 \mathrm{~s}$
Time delay t2:	adjustable $0-10 \mathrm{~s}$

Accuracy
Accuracy setting (mechanical):
Accuracy of repetition:
Temperature dependance:
Limit values tolerance:

Output

Number of contacts:
Current rating:
Breaking capacity:
Inrush current:
Switching voltage:
Min. breaking capacity DC:
Output indication:
Mechanical life:
cal life (AC1):
Operating temperature:

Storage temperature:
Electrical strength:
Operating position:
Mounting:
Protection degree:
Overvoltage cathegory:
Pollution degree:
Max. cable size (mm^{2}):
Dimensions:
Weight:
Standards:
$2 x$ changeover/ DPDT (AgNi / Silver Alloy)
16 A/AC1
$4000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$
$20 \mathrm{~A} /<3 \mathrm{~s}$
$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
500 mW
yellow LED
3×10^{7}
0.7×10^{5}
$-20^{\circ} \mathrm{C}$ to $+55^{\circ}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
4 kV (supply - output)
any
DIN rail EN 60715
IP 40 from front panel / IP 20 terminals
III.

2
max. 1×2.5, max. $2 \times 1.5 /$ with sleeve max. 1×1.5 (AWG 12)
$90 \times 52 \times 65 \mathrm{~mm}\left(3.5^{\prime \prime} \times 2^{\prime \prime} \times 2.6^{\prime \prime}\right)$
240 g (8 oz.)
EN 60255-6, EN 61010-1

Symbol Description

Connection

Function

After the device is switched on, the yellow LED flashes for time $t 1$ and both relays are switched (state 0 K). This delay serves to eliminate a faulty state e.g. motor start-up. If the upper limit is exceeded $(\cos \varphi-\max)$ red LED shines $>\cos \varphi$. After a time delay t2 the output relay opens (15-18). Equally, if it falls under bottom limit ($\cos \varphi-\min$) red LED shines $<\cos \varphi$ and after a time delay t2 the output relay opens (25-28). In case the load is disconnected (no current), red LED shines $>\cos \varphi(\cos \varphi=1)$.

Technical parameters	HRF-10
Supply and monitoring terminals:	L, N
Supply voltage:	$161-346 \mathrm{~V}$
Rated frequency Fn:	$50 / 60 / 400 \mathrm{~Hz}$
Burden: (max):	$1.7 \mathrm{VA} / 1.1 \mathrm{~W}$
Overload capacity:	
- continuous:	346 V
- max.10s:	416 V
Frequency Fmax:	adjustable $80-120 \% \mathrm{Fn}$
Frequency Fmin:	adjustable $80-120 \%$ Fn
Difference:	adjustable $0.5-5 \% \mathrm{Fn}$
Delay (until failure):	adjustable $0.5-10 \mathrm{~s}$
Opening level (Uopen):	161 V
Output relay - contact:	$1 x$ changeover $/$ SPDT (AgNi) gilded
AC contact capacity:	$250 \mathrm{~V} / 8 \mathrm{~A}$, max. 2000 VA
DC contact capacity:	$30 \mathrm{~V} / 8 \mathrm{~A}$
Mechanical life:	3×10^{6} at rated load
Other information	
Operational temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$
Storing temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-222^{\circ} \mathrm{F}\right.$ to $\left.1588^{\circ} \mathrm{F}\right)$

Storing temperature:
Electrical strenght:
(napájení - kontakt relé):
Protection degree:
Overvltage category:
Pollution degree:
Profile of connecting wires $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:
Standards:

$$
-30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \text { to } 158^{\circ} \mathrm{F}\right)
$$

$4 \mathrm{kV} / 1$ min.
III.

2
IP 40 from font panel / IP 20 terminals max. $2 \times 1.5 \mathrm{~mm}^{2} / 1 \times 2.5 \mathrm{~mm}^{2}$ (AWG 12) $90 \times 52 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 2^{\prime \prime} \times 2.6^{\prime \prime}\right)$

125 g (4.4 oz.$)$
EN 60255-6, EN 60255-27, EN 61000-6-2, EN 61000-6-4

Rated frequency setting

$\mathrm{Fn}[\mathrm{Hz}]$
Fn setting $=50 \mathrm{~Hz}$

$\mathrm{Fn}[\mathrm{Hz}]$
Fn setting $=60 \mathrm{~Hz}$

$\mathrm{Fn}[\mathrm{Hz}]$
Fn setting $=400 \mathrm{~Hz}$

Connection

- The relay serves to monitor frequency of AC voltage, e.g. in photovoltaic power stations, generators

The monitored frequency $50 / 60 / 400 \mathrm{~Hz}$ is selected by a switch

- Supply from monitored voltage
- Two adjustable levels of frequency (Fmin, Fmax) in the range of $80-120 \%$ Fn
- Adjustable difference level
- Adjustable delay level
- Switchable ranges of rated frequency Fn
- 3-MODULE, DIN rail mounting

Device description

After the supply (monitored) voltage is connected the green LED is on.
If the value of the monitored frequency falls within the range between the two set levels Fmin - Fmax no red LED is on. The relay UNDER is triggered (contacts 15-16-18) and the relay OVER is disconnected (contacts 25-26-28).
If the monitored frequency exceeds the set level Fmax, the relay OVER is triggered after the set delay timing elapses and the red LED OVER goes on. The red LED flashes during the timing.
If the monitored frequency drops below Fmax - difference, the relay is activated without delay and the red LED OVER goes off.
If the monitored frequency drops below the set level Fmin, the relay UNDER is disconnected after the set delay timing elapses and the red LED UNDER goes on. The red LED flashes during the timing. If the monitored frequency exceeds the level Fmin + the difference, the relay is triggered without delay and the red LED UNDER goes off.
If the monitored voltage is lower than the opening level Uopen both the relays are disconnected and both the red LED (UNDER and OVER) start flashing slowly - indicating insufficient supply voltage.

Thermostats and hygrostats

Analog

TER

TEV

ATV-1
Energy-saving digital thermostat for
radiators, with temperature range
$+8 .+28^{\circ} \mathrm{C}$.

Accessories to thermostats:

$\stackrel{\circlearrowright}{\beth}$	$\begin{aligned} & \text { 증 } \\ & \text { M } \end{aligned}$	Type		Sensor			Supply							$\begin{aligned} & \text { 흔 } \\ & . \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	
		斬	产	＋		$\stackrel{\circlearrowright}{\beth}$	خ⿳亠丷厂犬	守	方						
TER－3A	1M－DIN	\bullet			\bullet	NTC			\bullet		$\begin{aligned} & -30^{\circ} \mathrm{C} \text { to }+10^{\circ} \mathrm{C} \\ & \left(-22^{\circ} \mathrm{F} \text { to } 50^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} 0.5-5^{\circ} \mathrm{C} \\ \left(32.9^{\circ} \mathrm{F} \text { to } 41^{\circ} \mathrm{F}\right) \end{gathered}$		single thermostat into a switchboard with external sensor for temperature in cooling and against freezing	88
TER－3B	1M－DIN	－			－	NTC			－		$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+40^{\circ} \mathrm{C} \\ \left(32^{\circ} \mathrm{F} \text { to } 104^{\circ} \mathrm{F}\right) \end{gathered}$	$0.5-5^{\circ} \mathrm{C}$ $\left(32.9^{\circ} \mathrm{F}\right.$ to $41^{\circ} \mathrm{F}$ ）		single thermostat into a switchboards with external sensor for sensing room and operational temperature	88
TER－3C	1M－DIN	\bullet			\bullet	NTC			－		$\begin{aligned} & +30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \left(86^{\circ} \mathrm{F} \text { to } 158^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} 0.5-5^{\circ} \mathrm{C} \\ \left(32.9^{\circ} \mathrm{F} \text { t } 41^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$		single thermostat into a switchboards with external sens for sensing temperature in devices（overheating．．．）	88
TER－3D	1M－DIN	－			－	NTC			\bullet		$0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C}$ （ $32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$ ）	$\begin{gathered} 0.5-5^{\circ} \mathrm{C} \\ \left(32.9^{\circ} \mathrm{F} \text { to } 41^{\circ} \mathrm{F}\right) \end{gathered}$		single thermostat into a switchboard with external sensor for sensing operational temperature of machines and devi	
TER－3E	1M－DIN	\bullet			\bullet	NTC			－		$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ \left(32^{\circ} \mathrm{F} \text { to } 140^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	$1^{\circ} \mathrm{C}\left(34^{\circ} \mathrm{F}\right)$		as TER－3D but with fixed hysteresis	88
TER－3F	1M－DIN	－		－		NTC			－		$\begin{gathered} -15^{\circ} \mathrm{C} \text { to }+45^{\circ} \mathrm{C} \\ \left(5^{\circ} \mathrm{F} \text { to } 113^{\circ} \mathrm{F}\right) \end{gathered}$	$1^{\circ} \mathrm{C} / 34^{\circ} \mathrm{F}$		single thermostat into a switchboard with in－built sensor， monitors operational temperature in a switchboard	88
TER－3G	1M－DIN	\bullet			\bullet	PT100			－		$0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C}$ $\left(32^{\circ} \mathrm{F}\right.$ to $140^{\circ} \mathrm{F}$ ）	$\begin{gathered} 0.5-5^{\circ} \mathrm{C} \\ \left(32.9^{\circ} \mathrm{F} \text { to } 41^{\circ} \mathrm{F}\right) \end{gathered}$		as TER－3D but with input for sensor PT100	89
TER－3H	1M－DIN	\bullet			\bullet	NTC			－		$\begin{aligned} & -15^{\circ} \mathrm{C} \text { to }+45^{\circ} \mathrm{C} \\ & \left(5^{\circ} \mathrm{F} \text { to } 113^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} 0.5-5^{\circ} \mathrm{C} \\ \left(32.9^{\circ} \mathrm{F} \text { to } 41^{\circ} \mathrm{F}\right) \end{gathered}$		as TER－3A but with a different temperature range－for cooling and heating	89
TER－4	3M－DIN	\bigcirc			－（2x）	NTC	\bullet	\bigcirc		－	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+110^{\circ} \mathrm{C} \\ & \left(-40^{\circ} \mathrm{F} \text { to } 230^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} 0.5-2.5^{\circ} \mathrm{C} \\ \left(32.9^{\circ} \mathrm{F} \text { to } 37^{\circ} \mathrm{F}\right) \end{gathered}$		two－state thermostat（2 inputs， 2 outputs），two independent or dependent thermostats，accurate setting，wide temperature range	90
TER－7	1M－DIN	\bullet			\bullet	PTC			－		X	$\begin{aligned} & \text { Resistance } \\ & 1.8-3.3 \mathrm{k} \Omega \end{aligned}$		thermistor relay for protection of motor overheating，input designated for sensor PTC in－built in motor winding	91
TER－9	2M－DIN		－		－（2x）	NTC	\bullet	－		－	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+110^{\circ} \mathrm{C} \\ & \left(-40^{\circ} \mathrm{F} \text { to } 230^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} 0.5-5^{\circ} \mathrm{C} \\ \left(32.9^{\circ} \mathrm{F} \text { to } 41^{\circ} \mathrm{F}\right) \end{gathered}$		multifunction（ 6thermo functions）digital thermostat with in－built time switch clock， 2 inputs／2 outputs	92
TEV－1	IP65 box	\bullet			\bullet	INTC	－				$\begin{gathered} -20 \text { to }+20^{\circ} \mathrm{C} \\ \left(-4^{\circ} \mathrm{F} \text { to }+68^{\circ} \mathrm{F}\right) \end{gathered}$	$1.5^{\circ} \mathrm{C}\left(35^{\circ} \mathrm{F}\right)$		thermostat with＂dead zone＂，control of heating and protection against freezing，box for outdoor use with	98
TEV－2	IP65 box	\bullet			\bullet	NTC	\bullet				$\begin{gathered} -20 \text { to }+20^{\circ} \mathrm{C} \\ \left(-4^{\circ} \mathrm{F} \text { to }+68^{\circ} \mathrm{F}\right) \end{gathered}$	$1.5{ }^{\circ} \mathrm{C}\left(35^{\circ} \mathrm{F}\right)$		single thermostat for regulation of heating，short sensor is a part of this device，protection degree IP65	97
TEV－3	IP65 box	－			－	NTC	－				$+5 \text { to }+35^{\circ} \mathrm{C}$ （ $41^{\circ} \mathrm{F}$ to $149{ }^{\circ} \mathrm{F}$ ）	$1.5{ }^{\circ} \mathrm{C}\left(35^{\circ} \mathrm{F}\right)$		as TEV－2 but potentiometer and indication are placed on front panel	97
TEV－4	IP65 box				\bullet	NTC	\bullet				$\begin{aligned} & -30^{\circ} \mathrm{C} \text { o }+65^{\circ} \mathrm{C} \\ & \left(-22^{\circ} \mathrm{F} \text { to } 149^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} 0.5 / 1.5 / 4^{\circ} \mathrm{C} \\ 32.9 / 35 / 39^{\circ} \mathrm{F} \end{gathered}$		single exteriors thermostat for monitoring and regulation of temperature in demanding enviroments	99
ATR	ELEGANT	\bullet		－		NTC	－				$\begin{gathered} +5 \text { to }+40^{\circ} \mathrm{C} \\ \left(+41^{\circ} \mathrm{Fto}+104^{\circ} \mathrm{F}\right) \end{gathered}$	$1^{\circ} \mathrm{C}\left(34^{\circ} \mathrm{F}\right)$		room analog thermostat line THERMO for mounting into a wiring box	94
ATF	ELEGANT	\bullet			－	NTC	－				$\begin{gathered} +5 \text { to }+50^{\circ} \mathrm{C} \\ \left(+41^{\circ} \mathrm{Fto}+122^{\circ} \mathrm{F}\right) \end{gathered}$	$1^{\circ} \mathrm{C}\left(34^{\circ} \mathrm{F}\right)$		floor analog thermostat line THERMO for mounting into a wiring box	94
ATC	ELEGANT	\bullet		\bigcirc	\bullet	NTC	\bullet				$\begin{gathered} +5 \text { to }+50^{\circ} \mathrm{C} \\ \left(+41^{\circ} \mathrm{Fto}+122^{\circ} \mathrm{F}\right) \end{gathered}$	$1^{\circ} \mathrm{C}\left(34^{\circ} \mathrm{F}\right)$		room and floor（combined）analog thermostat line THERMO for mounting into a wiring box	94
DTR	ELEGANT		\bullet	－		NTC	\bullet				$\begin{gathered} +5 \mathrm{t} 0+50^{\circ} \mathrm{C} \\ \left(+41^{\circ} \mathrm{Fto}+122^{\circ} \mathrm{F}\right)(3 \end{gathered}$	$\begin{gathered} 0.5-1^{\circ} \mathrm{C} \\ \left(32.9^{\circ} \mathrm{F} \text { to } 344^{\circ} \mathrm{F}\right) \end{gathered}$		room digital thermostat line THERMO for mounting into a wiring box	95
DTF	ELEGANT		\bullet		\bullet	NTC	－				$\begin{gathered} +5 \text { to }+50^{\circ} \mathrm{C} \\ \left(+41^{\circ} \mathrm{Fto}+122^{\circ} \mathrm{F}\right)(3 \end{gathered}$	$\begin{gathered} 0.5-1^{\circ} \mathrm{C} \\ \left(32.9^{\circ} \mathrm{F} \text { to } 34^{\circ} \mathrm{F}\right) \end{gathered}$		floor digital thermostat line THERMO for mounting into a wiring box	95
DTC	ELEGANT		\bullet	－	\bullet	NTC	－				$\begin{gathered} +5 \mathrm{to}+50^{\circ} \mathrm{C} \\ \left(+41^{\circ} \mathrm{Fto}+122^{\circ} \mathrm{F}\right)(3 \end{gathered}$	$\begin{gathered} 0.5-1^{\circ} \mathrm{C} \\ \left(32.9^{\circ} \mathrm{F} \text { to } 34^{\circ} \mathrm{F}\right) \end{gathered}$		room and floor（ combined）digital thermostat line THERMO for mounting into a wiring box	95
RHT－1	1M－DIN	－		\bullet		built－in			\bullet		$0 \text { to }+60^{\circ} \mathrm{C}$ （ $32{ }^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$ ）	$\begin{aligned} & \mathrm{H}-4 \% \\ & \mathrm{~T}-2.5^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{H}-4 \% \\ \mathrm{~T}-2.5^{\circ} \mathrm{C}\left(36.5^{\circ} \mathrm{F}\right) \end{gathered}$	hygro－thermostat for temperature monitoring and regulation in range $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ ）and relative humidity in range $50 . .90 \%$	100
RHV－1	IP65	－		\bullet		built－in					$\begin{aligned} & -30^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & \left(-22^{\circ} \mathrm{F} \text { to } 140^{\circ} \mathrm{F}\right) \end{aligned}$	$2 \%, 3 \%, 4 \%$	$\begin{aligned} & 0 \ldots 30 \% \text { RH } \\ & 30 \ldots 60 \% \text { RH } \\ & 60 \ldots 90 \% R H \end{aligned}$	hygro－thermostat for humidity monitoring and regulation in range $0 . .90 \% \mathrm{RH}$	101
ATV－1	valve		－	\bullet		built－in					$+8 . .+28^{\circ} \mathrm{C}$			thermostatic direction valves，temperature regulation $+8 . .+28^{\circ} \mathrm{C}$	96

Thermostats line TER-3 (A, B, C, D, G, H)

- Single thermostat for temperature monitoring and regulation in range $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ in six ranges
- It can be used for monitoring temperature e.g. in switchboards, heating systems, cooling systems, liquids, radiators, motors, devices, open spaces, etc.
- Function of short-circuit or sensor disconnection monitoring
- Possibility to set function "heating"/"cooling" (setting is done by DIP switch)
- Adjustable hysteresis (sensitivity), switching by potentiometer in range 0.5 to $5^{\circ} \mathrm{C} / 32.9$ to $41^{\circ} \mathrm{F}$
- Choice of external temperature sensors with double insulation in standard lengths 3,6 and 12 m ($9.8^{\prime}, 19.7^{\prime}$ and 29.5^{\prime})
- It is possible to place sensor directly on terminal block - for temperature monitoring in a switchboard or in its surroundings
- Multivoltage supply AC/DC $24-240 \mathrm{~V}$, not galvanically separated
- Output contact 1x N0 - SPST 16 A /250 V AC1
- Red LED indicates status of output, green LED indicates energization of the device
- 1-MODULE, DIN rail mounting

Symbol

Function

Connection

Function description

It is a single but practical thermostat with separated sensor for monitoring temperature. Device is placed in a switchboard and external sensor senses temperature of required space, object, or liquid. Supply is not galvanically separated from sensor. Sensor is double insulated. Maximal length of delivered sensor is $12 \mathrm{~m} / 29.5^{\prime}$. device has in-built indication of sensor damage, which means that in case of short-circuit or disconnection red LED fl ashes. Thanks to adjustable hysteresis, it is advantageous to regulate width of the range and thus define sensitivity of load switching. Sensed temperature is decreased by set hysteresis. When installing it is necessary to keep in mind that hysteresis is increased by temperature gradient between sensor's jacket and thermistor.

Description

- Single thermostat for temperature monitoring and regulation in range 0 to $+60^{\circ} \mathrm{C} /\left(32^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
- It can be used for temperature monitoring e.g. in switchboards, heating systems, iquids, radiators, motors, devices, open spaces, etc
- Fixed hysteresis at $1^{\circ} \mathrm{C} / 32^{\circ} \mathrm{F}$
- TER-3E-choice of external temperature sensors with double insulation in standard lengths 3,6 and 12 m (9.8', 19.7' and 29.5^{\prime})
- TER-3F - sensor is a part of device, serves for monitoring temperature in a switchboard
- Supply voltage AC/DC 24-240 V
- Output contact 1x NO- SPST 16 A / 250 V AC1
- Output status is indicated by red LED
- 1-MODULE, DIN rail mounting

Setting accuracy (mech.):	5%
Switching difference:	$0.5^{\circ} \mathrm{C}$
Temperature dependance:	$<0.1 \% /{ }^{\circ} \mathrm{C}$

Output

Number of contacts:	$\left.1 \times \mathrm{NO}-\mathrm{SPST}(\mathrm{AgSnO})_{2}\right)$
Current rating:	$16 \mathrm{~A} / \mathrm{AC1}, 10 \mathrm{~A} / 24 \mathrm{~V}$ DC
Breaking capacity:	$4000 \mathrm{VA} / \mathrm{AC1}, 300 \mathrm{~W} / \mathrm{DC}$
Switching voltage:	$250 \mathrm{~V} \mathrm{AC1} / 24 \mathrm{VDC}$
Min. breaking capacity DC:	500 mW
Output indication:	red LED
Mechanical life:	3×10^{7}
Electrical life (AC1):	0.7×10^{5}

Other information	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Operating temperature:	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Storage temperature:	$2.5 \mathrm{kV}($ supply - output $)$
Electrical strength:	any
Operating position:	DIN rail EN 60715
Mounting:	IP 40 from front panel /IP 10 terminals
Protection degree:	

Function

TER-3E, TER-3F

Function description

It is a single thermostat for temperature monitoring with separated sensor (except for TER-3F). Device is located in a switchboard and external sensor senses temperature of required space, object or liquid. Supply is not galvanically separated from sensor but sensor is double insulated. Maximal length of sensor cable is 12 $\mathrm{m}\left(29.5^{\prime}\right)$. Temperature sensing is decreased by set hysteresis. When installing it is necessary to keep in mind that hysteresis is increased by temperature gradient between sensor's jacket and thermistor.

- Two-state thermostat for temperature monitoring and regulation in a wide range $-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.230^{\circ} \mathrm{F}\right)$ with a switch for temperature ranges shift and fine temperature setting (high accuracy of setting)
- It can be used for temperature monitoring in e.g. switchboards, heating systems, cooling systems, open spaces, objects, liquids, radiators, etc.
- 2 thermo inputs for sensor NTC $12 \mathrm{k} \Omega / 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$
- Possibility to choose if both thermostats should work independently or dependently (by DIP switch)
- Function of short-circuit or sensor disconnection monitoring
- Possibility to set functions "heating "/"cooling " (setting is done by DIP switch)
- Adjustable hysteresis (sensitivity) of switching 0.5 or $2.5^{\circ} \mathrm{C}\left(32.9\right.$ or $\left.37^{\circ} \mathrm{F}\right)$ (DIP switch)
■ Choice of external thermo sensors with double insulation in standard lengths 3, 6 and 12 m ($9.8^{\prime}, 19.7^{\prime}$ and 29.5 ${ }^{\prime}$)
- It is possible to place the sensor directly on terminal block - to monitor temperature in a switchboard or in its surroundings
- Galvanically separated supply AC 230 V or AC/DC 24 V galvanically unseparated
■ 2 independent output with changeover contacts/ SPDT 16 A /250 V AC1
- Output status indicated by red LED, faulty status of sensor by yellow LED
- 3-MODULE, DIN rail mounting

Technical parameters:	TER-4	
Function:	double thermostat	
Supply terminals:	A1-A2	
Voltage range:	AC $230 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$ galvanically separated, $\mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}$	
Burden:	max. 4.5 VA	
Supply voltage tolerance:	-15\%; + 10%	
Measuring circuit		
Measuring terminals:	T1-T1 a T2-T2	
Temperatue ranges: (set via switch individually for each level)	-40 to $-25^{\circ} \mathrm{C} /-40$ to $77{ }^{\circ} \mathrm{F}$	+35 to $+50^{\circ} / / 95$ to $122^{\circ} \mathrm{F}$
	-25 to - $10^{\circ} \mathrm{C} / 77$ to $50{ }^{\circ} \mathrm{F}$	+50 to $+65^{\circ} \mathrm{C} / 122$ to $149^{\circ} \mathrm{F}$
	-10 to $+5^{\circ} \mathrm{C} / 50$ to $41^{\circ} \mathrm{F}$	+65 to $+80^{\circ} \mathrm{C} / 149$ to $176^{\circ} \mathrm{F}$
	+5 to $+20^{\circ} \mathrm{C} / 41$ to $70{ }^{\circ} \mathrm{F}$	+80 to $+95^{\circ} / / 176$ to $203^{\circ} \mathrm{F}$
	+20 to $+35^{\circ} \mathrm{C} / 70$ to $95^{\circ} \mathrm{F}$	+95 to +110 ${ }^{\circ} / 203$ to $230^{\circ} \mathrm{F}$

Description

Symbol

$2 x$ changeover/ DPDT (AgNI / Silver Alloy) 16A / AC1 4000 VA / AC1, 384 W / DC
$30 \mathrm{~A} /<3 \mathrm{~s}$
$250 \mathrm{VAC1} / 24 \mathrm{~V} D$
500 mW
red LED
3×10^{7}
0.7×10^{5}
$-20 . .+55^{\circ} \mathrm{C}$
$-30 . .+70^{\circ} \mathrm{C}$
4 kV (supply - output)
any
DIN rail EN 60715
IP 40 from front panel /IP 20 terminals

III.

2
solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×1.5 (AWG 12)
$90 \times 52 \times 65 \mathrm{~mm}\left(3.5^{\prime \prime} \times 22^{\prime \prime} \times 2.6^{\prime \prime}\right)$
238 g (8.4 oz.$)$
EN 60730-2-9, EN 61010-1
Standards:
This device includes 2 thermostats in one. Thermostat has 2 thermo inputs, 2 outputs and individual temperature setting. It offers two possibilities of use. Firstly it can be used as two individual thermostats (e.g. for monitoring two temperature levels of one device or as a control of individual devices), secondly it is possible to set depending function of both thermostats, when thermostat 2 blocks thermostat No. 1 Advantage of this thermostats is a wide temperature range $-40 . .+110{ }^{\circ} \mathrm{C}$ (in one device) with very good mechanical accuracy of setting. It is due to 10 -state switch for thermo ranges and its scale by $15^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right)$. VIt is possible to use fine tuning by potentiometer by $0-15^{\circ} \mathrm{C}\left(32-59^{\circ} \mathrm{F}\right)$ with accuracy $\pm 1^{\circ} \mathrm{C} / 34^{\circ} \mathrm{F}$. Device has in-built control of sensor fault (yellow LED). It is possible to set hysteresis 0.5 or $2.5^{\circ} \mathrm{C}\left(32.9\right.$ or $\left.37^{\circ} \mathrm{F}\right)$.
It is possible to operate the thermostat only with one sensor. In that case it is necessary to connect a resistor $10 \mathrm{k} \Omega$ to the other input. This is a part of delivery.

Function

The device controls temperature of motor winding with PTC thermistor which is mostly placed in motor winding or very close to it. Resistance of PTC thermistor run to max $1.5 \mathrm{k} \Omega$ in cold stage.
By temperature increase the resistance goes strongly up and by overrun the limit of $3.3 \mathrm{k} \Omega$ the contact of output relay switch off - mostly contactor controlling a motor. By temperature decrease and thereby decrease of thermistor resistance under $1.8 \mathrm{k} \Omega$ the output contact of relay again switches on. The relay has function "Control of sensor fault". This controls interruption or disconnection of sensor. When switch is in position "TK" monitoring of faulty sensor is not functional - it is possibel to connect bimetal sensor with only 2 states: ON or OFF. The device can work with bi-metal sensor in this position.
Other safety unit is function "Memory". By temperature overrun (and output switches off) the output is hold in faulty stage until service hit. This bring the relay to normal stage (with RESET button) on front panel or by external contact (remote).

- Digital thermostat with 6 functions and built-in time switch clock with day, week and year program. You can also limit temperature functions and courses this way in real time.
- Complex control of home and water heating, solar heating, etc.
- Two thermostats in one, two temperature inputs, two outputs with dry contact
- Maximum universal and variable thermostat including all ordinary thermostat functions
- Functions: two independent thermostats, dependent thermostat, differential thermostat, two level thermostat, zone-based thermostat, dead zone thermostat
- Program setting of output functions, calibration of sensors according to reference temperature (offset)
- The thermostat is subject to the digital clock programs
- Wide operating range of temperature settings, the possibility of measuring in ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$
- Clear display of set and measured data on a backlit LCD
- Power supply: AC 230V or 24V AC/DC (based on type of device)
- The time switch clock has a battery backup, which retains data in case of a power outage (reserve backup time - up to 3 years)
- Easy replacement of the backup battery through the plug-in module, no disassembling is required
- Output contact 1x changeover/SPDT 8 A / 250 V AC1 for each output
- 2-MODULE, DIN rail mounting

Technical parameters:	TER-9
Supply	
Number of function:	6
Supply terminals:	A1-A2
Voltage range:	AC $230 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$ galvanically separated,
	$\mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}$ galvanically unseparated
Burden:	max. 4 VA

Symbol

Description of visual elements on the display

2 independent single-stage thermostats

Legend:
Ts1 - real (measured) temperature 1
Ts2 - real (measured) temperature 2
T1 - adjusted temperature T1
T2 - adjusted temperature T2
H1 - adjusted hysteresis for T1
H2 - adjusted hysteresis for T2
dy1- set switching delay of the output
dy2 - set delay on output breaking
15-18 output contact (for T1)
25-28 output contact (for T2)

Depending functions of 2 thermostats

Legend:

Ts1-real (measured) temperature 1
Ts2 - real (measured) temperature 2
T1-adjusted temperature T1
T2 - adjusted temperature T2
H1 - adjusted hysteresis for T1
H2 - adjusted hysteresis for T2
dy1- set switching delay of the output
dy2 - set delay on output breaking
25-28 output contact (for T2)
15-18 output contact (intersection T1 and T2)

Classic function of thermostat, output contact switched until adjusted temperature is reached. Hysteresis eliminates frequent switching - output oscillation.

Output 15-18 is closed, if temperature of both thermostats is bellow an adjusted level. When any thermostat reaches adjusted level, the contact 15-18 opens.
Serial inner connection of thermostats (logic function AND).

Differential thermostat

Legend:
Ts1 - real (measured) temperature T1
Ts2 - real (measured) temperature T2
D-adjusted difference
dy1- set switching delay of the output
dy2 - set delay on output breaking
15-18 output contact (for T1)
25-28 output contact (for T2)

2-stage thermostat

Legend:
Ts - real (measured) temperature
T1-adjusted temperature
D - adjusted difference
H1 - adjusted hysteresis for T1
H2-T=T1-D
dy1- set switching delay of the output
dy2-set delay on output breaking
15-18 output contact
25-28 output contact

Thermostat with "WINDOW"

Legend:
Ts - real (measured) temperature
T1-adjusted temperature
T2 - adjusted temperature T=T1-D H 1 - adjusted hysteresis for T1 H2 - adjusted hysteresis for T2 dy1- set switching delay of the output dy2 - set delay on output breaking 15-18 output contact 25-28 output contact

Output is closed (heating) only if temperature is within adjusted range. If temperature is out of range, the contact opens. T is set as T1-D.
The function is used for protection of gutters against freezing.

Legend:

Ts - real (measured) temperature
T1-adjusted temperature
T2-T=T1-D
H1 - adjusted hysteresis for T1
H2 - adjusted hysteresis for T2
dy1- set switching delay of the output
dy2 - set delay on output breaking
15-18 output contact (heating)
25-28 output contact (cooling)

Switching of output corresponds with input, which has lower temperatures when diffference is exceeded.
Differencial thermostat is used for keeping two identical temperature e.g. in heating systems (boiler and reservoir), solar systems (collector - reservoir, exchanger), water heating (water heater, water distribution)etc.

Typical example of use for two-stage thermostat is e.g in boiler-room, where there are two biolers from which one is main and the other one is auxiliary. The main boiler is managed according to set temperature and auxiliary boiler is switched in case temperature falls under set difference. Thus it helps to the main boiler in case outside temperature dramatically falls.
In the range of set difference (D) output 15-18 functions as normal thermostat to input 1 (type 1). In case temperature falls under set difference, second output switches too.

In case of thermostat with a "dead zone" , it is possible to set temperature T1 and a diff erence (respectively a width of dead zone D). If temperature is higher than T1, output contact of cooling switches 0 N ; if the temperature gets bellow T 1 , the contact switches OFF.
If the temperature gets bellow temperature T , the contact of heating switches ON and it switches OFF when temperature T is exceeded. This function can be used for example for automatic air warming and cooling in ventilation so the sit is always within the range T1 and T.

$\boldsymbol{Z}^{7} 30 \mathrm{~mm}$ Ø 65mm

EAN code - DEVICE:
ATR : 8595188125000 ATF : 8595188130165 ATC : 8595188130172 ATC, white frame Elegant, termosensor TC-3m: 8595188135887

- ATR-Analog Thermo Room:

Room thermostat with temperature range +5 to $+40^{\circ} \mathrm{C}\left(+41^{\circ} \mathrm{F}\right.$ to $\left.+104^{\circ} \mathrm{F}\right)$ with a built-in sensor

- ATF - Analog Thermo Floor:

Floor thermostat with temperature range +5 to $+50^{\circ} \mathrm{C}\left(+41^{\circ} \mathrm{F}\right.$ to $\left.+122{ }^{\circ} \mathrm{F}\right)$ with external sensor Function „temporary temperature change" in range $\pm 10^{\circ}$ (decreasing / increasing temperature)

- ATC - Analog Thermo Combined:

Room and floor thermostat, sensors are connected in series and block each other Function „temporary temperature change" , fix $-5^{\circ} \mathrm{C} /+23^{\circ} \mathrm{F}$ (night decline)
Temperature range +5 to $+50^{\circ} \mathrm{C}\left(+41^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ for both sensors, adjustable separately It is possible to use it without external sensor

- ATR, ATF, ATC

Night decline is activated by a pushbutton on device or external contact (only ATR)
Night decline setting is done by an auxiliary button 2 (under main button, only ATR/ATF)
Ofset setting (calibration $\pm 10^{\circ} \mathrm{C} / 50^{\circ} \mathrm{F}$) with,,known" thermometer.
External sensor ($\mathrm{T}-3,3 \mathrm{~m} / 9.84^{\prime}$) is a part of delivery (only ATF/ATC), it is possible to extend its length up to $100 \mathrm{~m} / 328^{\prime}$
Design ELEGANT*, wide range of colors, possibility to combine more frames together

Complete offer of switching devices line ELEGANT can be found in an individual catalogue ELEGANT Home switches, which can be sent to you upon request.

EAN code - DEVICE: EAN code - COMPLET:
DTR : 8595188125017 DTR, white frame Elegant: 8595188136235
DTF : 8595188135924 DTF, white frame Elegant, termosensorTC-3m:8595188135863 DTC : 8595188135931 DTC, white frame Elegant, termosensorTC-3m: 8595188135856 To devices is neccessary to order additionally - frame in design ELEGANT and external sensor (except DTR)

Technical parameters	DTR	DTF
Supply		

Adjusting

Min. temperature cycle:	$0.5^{\circ} \mathrm{C}\left(32.9^{\circ} \mathrm{F}\right)$
Min.time cycle:	10 min.
Number of programs:	$4 ;$ pre- set program 1
Number of events:	$2-6$ in a program
Offset/calibration:	adjustable $\pm 0.5^{\circ} \mathrm{C}\left(32.9^{\circ} \mathrm{F}\right)$

Display
LCD display:
Displaynig date:
Output indication:
Output
Type:
Max.Ioadability:
Contact separation:
Mechanical life:
Elektrical life:
Other information
Operating position:
Storing position:
Electical strenght:
Mounting:
Protection degree:
Max. cable size (mm^{2}):
Dimensions:
Weight:
Standards:
$26 \times 24 \mathrm{~mm}$, with backlight (ON or OFF pernamently) current time, set/ current temperature, day in a week, output status red LED and symbol $\lll \ll$ on LCD
potential- free contact NO-SPST, material of contact - AgNi (Silver Allow)
16A/250V, 4000VA by AC1
galvanic, electrical strength 4kV
3×10^{7}
0.7×10^{5}

$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(+14^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$

4kV
IP30 in standard conditions
wiring box with min. depth $30 \mathrm{~mm} / 1.1^{\prime \prime}, \varnothing \mathrm{min} .65 \mathrm{~mm} / 2.6^{\prime \prime}$
solid wire 1×2.5 / 1.5 with sleeve (AWG 12)
$84 \times 89 \times 54.3 \mathrm{~mm}$ ($\left.3.3^{\prime \prime} \times 3.5^{\prime \prime} \times 2.14^{\prime \prime}\right)$
120 g (0.260z.)
EN 60730-2-9, EN 61812-1, EN 61010-1

Design

Complete offer of switching devices line ELEGANT can be found in an individual catalogue ELEGANT Home switches, which can be sent to you upon request.

- DTR - Digital Thermo Room:

Room thermostat with temperature range +5 to $+50^{\circ} \mathrm{C}\left(+41^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ with a built-in sensor

- DTF - Digital Thermo Floor:

Floor thermostat with temperature range +5 to $+50^{\circ} \mathrm{C}\left(+41^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ with external sensor

- DTC - Digital Thermo Combined:

Combined thermostat with room and floor sensors and temperature range +5 to $+50^{\circ} \mathrm{C}\left(+41^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ Choice of temperature display from internal or external sensors
By program it is possible to choose, which sensor is active and if it should function in serial or in parallel

- DTF, DTC

External sensor (TC-3,3m)is a part of delivery (only ATF/ATC), it is possible to extend its length up to $100 \mathrm{~m}\left(328^{\prime}\right)$ Monitoring of disconnection or short-circuit of external sensor, fault is displayed

Other Funktions DTR, DTF, DTC

- programs are pre-set according to most frequently used functions = „Plug and Play " - pushbutton lock to prevent unwanted manipulation with thermostat
- choice of display current/set temperature
- „freezing protection" in case temperature drops below $+50^{\circ} \mathrm{C}\left(+122^{\circ} \mathrm{F}\right)$ thermostat always switches heating on
- choice of function heating or cooling
- easy and intuitive control by four push-buttons
- automatic shift summer/winter time
- holiday mode -it is possible to set temperature and time from 1 hour to 99 days without any intervention into program settings or turning heating off (suitable in case of planned absence holiday...)
- modern desing in Elegant line of wall switch buttons, combinations with many colors and multiframes are possible
Description of visual elements on the display

Program mode	(17) 2 [3 [4 5 [6] 7	Day of the week
Operational mode	Prog 1 T. ${ }^{\text {a }}$ AM	AM/PM
Time setting	Auto	Holliday mode
Manual mode (permanent/temporary)	${ }^{\circ} \mathrm{C}$	Temperature display
External sensor		
	! ! !	Program events

Description

Wiring box

Connection

DTR

DTF
DTC

Accuracy:

See page 102

NEW!

EAN code

ATV-1
USB programming
adapte $\quad 8595188160995$

Technical parameters:	ATV-1
Operating voltage:	$3 \mathrm{~V} / \mathrm{DC}(2 \mathrm{AA}$ batteries $1.5 \mathrm{~V} / \mathrm{DCAA})$
Temperature range:	$+8 . .+28^{\circ} \mathrm{C}$
Color:	White
Dimensions $(\mathrm{L} \times \mathrm{W} \times \mathrm{H}):$	$76.5 \times 53.5 \times 63 \mathrm{~mm}$
Design:	Thermostatic direction valves, electronic

Examples of daily heating program:

BATHROOM

Setting for ATV-1:

- manual
- via USB programming adapter PROGmatic

Using the programming port, in seconds your settings will be transferred into the thermostat.

- This energy-saving digital radiator thermostat is a programmable regulation device for various heaters, but mainly radiators
It can be used to regulate temperature in closed rooms, thus helping to lower heat energy consumption;
- Functions:

Manual mode - measuring and checking a manually set temperature
Automatic mode - control between two temperatures based on a set time program:

- comfort temperature (factory setting $21^{\circ} \mathrm{C}$)
- energy-saving temperature (factory setting $16^{\circ} \mathrm{C}$)
- Intervals of heating and energy-saving operation can be set using a freely adjustable time program.
- 8 individually programmable switching times per day:
-4 heating intervals
- 4 energy-saving intervals
- The device features very quiet operation and long battery life (up 5 years)
- Quick and easy installation

Other functions

1. Time function - the desired temperature can be set for a certain adjustable time interval
2. Vacation function - while you're gone, you can set and maintain the desired temperature
3. Open window function - when the temperature drops, the heating valve automatically closes in order to save energy
4. Child safety block - blocking against undesired interference with the thermostat 5. Freeze protection - if the temperature drops below $6^{\circ} \mathrm{C}$, the valve opens until the temperature again exceeds $8^{\circ} \mathrm{C}$. This keeps heaters from freezing.

Description of device

Adapters

Type of valve	Type of adapter		
Heimeier, Junkers Landys+Gyr, MNG, Honeywell, Braukmann thread size M 30x1,5	No adapter necessary + enclosed pin; only for RAV		
Danfoss RAV (the valve plunger must be fitted with the enclosed pin)		Package content	
		Package content	∇
Danfoss RA			
		Thermostat	5
Danfoss RAVL		Adapters ${ }^{\text {b }}$	1330
		Instruction manual	泰

TEV-2 and TEV-3 are universal single thermostats for universal use. In case ambient temperature is higher than set temperature relay is open (function HEATING), for cooling function (opposite function) is possible to use NC contact of relay (V2).

- Single thermostat with possibility of temperature management in adjustable range (it is possible to modify this range or make a special one on request)
- Used to regulate heating (or cooling) in demanding environments (outside , humidity, dustiness, etc.)
- Thermostat is placed in water-proof box with IP65, which enables installation outside, with in-built sensor TC-0
- TEV-2 - control and indication elements are placed under transparent cover
- TEV-3 - control and indication elements are placed directly on the cover (for easy orientation and frequent change of temperature)
- Thermostat status is indicated by LED (2 colours)
- Function of monitoring sensor disconnection and short-circuit
- Output changeover /SPDT contact 16A(AC-1)

TEV-2: 8595188129251

Technical parameters	TEV-2 TEV-3
Function:	one-level thermostat
Supply terminals:	L-N
Voltage range:	230 V AC/ $50-60 \mathrm{~Hz}$
Input:	max. 2.5 VA
Tolerance of voltage range:	$\pm 15 \%$
Measuring circuit	
Measuring terminals:	T-T
Temperature ranges:	-20 to $+20^{\circ} \mathrm{C} /-4{ }^{\circ} \mathrm{F}$ to $+68^{\circ} \mathrm{F}+5 \mathrm{to}+35^{\circ} \mathrm{C} /+41^{\circ} \mathrm{Fto}+95^{\circ} \mathrm{F}$
Hysteresis (sensitivity):	$3^{\circ} \mathrm{C}\left(\pm 1.5^{\circ} \mathrm{C}\right) / 37,4^{\circ} \mathrm{F}\left(\pm 34.7^{\circ} \mathrm{F}\right)$
Sensor:	thermistor NTC $12 \mathrm{k} \Omega$
Faulty sensor indication:	red LED flashing

Accuracy

Accuracy of settings (mechanical):	5%
Dependance on temperature:	$<0.1 \% /{ }^{\circ} \mathrm{C}$
Output	$1 x$ changeover/ SPDT (AgNI / Silver Alloy)
Number of contacts:	$16 \mathrm{~A} / \mathrm{AC1}$

Max. breaking capacity:	$4000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$
Peak current:	$30 \mathrm{~A} /<3 \mathrm{~s}$
Switched voltage:	$250 \mathrm{VAC1} / 24 \mathrm{~V}$ DC
Min.switching output DC:	500 mW
Output indication:	red LED
Mechanical life:	3×10^{7}
Electrical life (AC1):	0.7×10^{5}
Other information	
Operation temperature:	-30 to $+50^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
Operation position:	any
Protection degree:	IP 65
Overvoltage cathegory:	III.
Polution level:	2
Max. cable size (mm^{2}):	solid wire 2.5 / with sleeve 1.5 (AWG 12)

Dimensions: $\quad 110 \times 135 \times 66 \mathrm{~mm}\left(4.33^{\prime \prime} \times 5.3^{\prime \prime} \times 2.3^{\prime \prime}\right)$
Weight: 266 g (9.38 oz.) 277 g (9.77 oz.)
Standards:
EN 60730-2-9, EN 61010-1

Function TEV-2,TEV-3

Connection

Function heating

Description TEV-2 (without cover)

Description TEV-3 (cover)

EAN code
TEV-1: 8595188129121

Technical parameters	TEV-1
Function:	two-level thermostat
Supply terminals:	L-N
Voltage range:	$230 \mathrm{VAC} / 50-60 \mathrm{~Hz}$
Input:	max. 2.5 VA
Tolerance of voltage range:	± 15 \%
Measuring circuit	
Measuring terminals:	T-T
Temperature ranges: thermostat 1 thermostat 2	$\begin{aligned} & -20 . .+20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F} \text { to }+68^{\circ} \mathrm{F}\right) \\ & -20 . .+20^{\circ}\left(\left(-4^{\circ} \mathrm{F} \text { to }+68^{\circ} \mathrm{F}\right)\right. \end{aligned}$
Hysteresis (sensitivity):	$3^{\circ} \mathrm{C}\left(\pm 1.5^{\circ} \mathrm{C}\right)$
Sensor:	thermistor NTC $12 \mathrm{k} \Omega / 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$
Faulty sensor indication:	red LED flashing
Accuracy	
Accuracy of settings (mechanical):	5\%
Dependance on temperature:	$<0.1 \% /{ }^{\circ} \mathrm{C}$
Output	
Number of contacts:	1x changeover/ SPDT (AgNI / Silver Alloy)
Current rating:	16A/AC1
Max. breaking capacity::	$4000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$
Peak current:	$30 \mathrm{~A} /<3 \mathrm{~s}$
Switched voltage:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
Min.switching output DC:	500 mW
Output indication:	LED
Mechanical life:	3×10^{7}
Electrical life:	0.7×10^{5}
Other information	

Operation temperature:	$-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Operation position:	any
Protection degree:	IP 65
Overvoltage cathegory:	III.
Pollution level:	2
Max. cable size $\left(\mathrm{mm}^{2}\right):$	solid wire $2.5 /$ with sleeve 1.5 (AWG 12)
Dimensions:	$110 \times 135 \times 66 \mathrm{~mm}\left(4.33 " \times 5.3^{\prime \prime} \times 6.66^{\prime \prime}\right)$
Weight:	$238 \mathrm{~g}(8.4 \mathrm{oz})$.
Standards:	EN $60730-2-9, \mathrm{EN} \mathrm{61010-1}$

Description of function

TEV-1 is a double thermostat designated for system of protection of roof watershoots against freezing. The device is placed in a waterproof box (IP65), sensor with double insulation, which is a part of the device, senses ambientrature. The device operates as zonal thermostat with independent setting of upper and bottom operational temperature. In case the ambient temperature is higher than T1 (upper temperature), thermostat switches heating of watershoots off (icing melts down). In case the ambient temperature is lower than T2 (bottom temperature), thermostat also switches heating off (to big freezing heating cannot manage to melt the ice).

- Two-level thermostat with function "WINDOW" meaning that output is switched in case the measured temperature is within set range (adjustable in range $-20 . .+20^{\circ} \mathrm{C} /-4^{\circ} \mathrm{F}$ to $+68^{\circ} \mathrm{F}$)
- Used as protection against freezing (water-shoots, pavements, drives, pipes, etc.) heating is on when temperature falls under set upper level (e.g. $+5^{\circ} \mathrm{C} /+41^{\circ} \mathrm{F}$) and off in case it falls under lower level (e.g. $-10^{\circ} \mathrm{C} /-50^{\circ} \mathrm{F}$, when heating is not able effectively operate)
- Thermostat is placed in water-proof box with IP65, which allows installation outside, with in-built sensor TC-0
- Thermostat status is indicated by LED (3colors) under transparent cover
- Function monitoring short-circuit and sensor disconnection (break)
- Output changeover contact 16A/ SPDT (AC-1)

Function

Description

Opening for incoming cables

EAN code
TEV-4: 8595188140577
Technical parameters: TEV-4

Supply

Supply terminals:	L-N
Voltage range:	AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
Tolerance of voltage range:	$-15 \% . .+10 \%$
Input (apparent/loss):	max. $6 \mathrm{VA} / 0.7 \mathrm{~W}$
Function	setting by jumper J3
Function - 桃:	cooling
Function - III:	heating
Temperature setting	by jumper J2

merature setting	by jumper J2
- range 1:	$-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.32^{\circ} \mathrm{F}\right)$
- range 2:	$0^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.86^{\circ} \mathrm{F}\right)$
- range 3:	$+30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right.$ to $\left.140{ }^{\circ} \mathrm{F}\right)$
Slight temperature setting:	potentiometer
Hysteresis:	$0.5 / 1.5 / 4^{\circ} \mathrm{C}\left(32.9{ }^{\circ} \mathrm{F} / 34.7^{\circ} \mathrm{F} / 39.2{ }^{\circ} \mathrm{F}\right)$
Hysteresis setting:	by jumper J1
Output	
Output contact:	$1 \times \mathrm{NO}-\mathrm{SPST}\left(\mathrm{AgSnO}_{2}\right)$
Current rating:	$12 \mathrm{~A} / \mathrm{AC1}$
Max. breaking capacity:	$3000 \mathrm{VA} / \mathrm{AC} 1,384 \mathrm{~W} / \mathrm{DC}$
Peak current:	$30 \mathrm{~A} /<3 \mathrm{~s}$
Switched voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$
Min.switching output:	500 mW
Mechanical life:	3×10^{7}
Electrical life:	0.7×10^{5}
Other information	
Operation temperature:	$-30^{\circ} \mathrm{Cto}+65^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.149^{\circ} \mathrm{F}\right)$
Storing temperature:	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Electrical strengh:	4kV (supply-output)
Operation position:	sensor-side down
Protection degree:	IP65
Overvoltage cathegory:	III.
Pollution level:	2

Max. cable size (mm^{2}):
Suggested power-supply cable:
Dimensions:
Weight:
Standards:

Function

TEV-4

AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
5\% .. $+10 \%$
setting by jumper J3
cooling
.
$-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.32^{\circ} \mathrm{F}\right)$
$0^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.86^{\circ} \mathrm{F}\right)$
potentiometer
by jumper J1
x NO-SPST (AgSnO ${ }_{2}$)
$3000 \mathrm{VA} / \mathrm{AC} 1,384 \mathrm{~W} / \mathrm{DC}$
$250 \mathrm{VAC} / 24 \mathrm{VDC}$
5001
0.7×10^{5}
$-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.149^{\circ} \mathrm{F}\right)$

4kV (supply -output)
sensor-side down
III.
max. 1×2.5, max. $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)
CYKY 3×2.5 (CYKY4x1.5)
$153 \times 62 \times 34 \mathrm{~mm}$ ($\left.6^{\prime \prime} \times 2.4^{\prime \prime} \times 1^{\prime \prime}\right)$
148 g (5.2 oz.$)$
EN 60730-2-9, 61010-1

- Single point thermostat for monitoring and regulation of temperature in demanding enviroments (humid and contaminated, agressive and defective, industrial workshops, washing rooms, green-houses, cellars and cooling boxes. ..)
- External version in IP65, box for mounting on the wall
- Built-in thermo-sensor is integrated in the device
- Two fuctions adjustable by jumper: heating and cooling
- 3 adjustable (by jumper) ranges of temperature, and fine adjustment through potentiometer
- 3 adjustable (by jumper) levels of hysteresis
- Supply voltage 230 V AC
- Potentialless N0- SPST contact 12A AC1 switching

- Hygro-thermostat for temperature monitoring and regulation in range $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ and relative humidity monitoring and regulation in range 50...90\%
- Possibility of setting of up to 8 conditions for contact switching and function permanently ON/OFF
- Sensor is a part of the device - designated for measuring in switchboards
- Function of sensor control (damage, disturbances...)
- Fixed setting of temperature hysteresis at $2.5^{\circ} \mathrm{C} / 36.5^{\circ} \mathrm{F}$ and humidity at 4%
- Output state is indicated by red LED
- Supply voltage AC/DC $24-240 \mathrm{~V}$
- Output contact 1x NO/ SPDT 16A/250 V AC1
- 1-MODULE, DIN rail mounting

EAN code
RHT-1: 8595188137263

Standards:
EN 60730-2-9, EN 61010-1
Symbol

Connection

| EAN code | |
| :--- | :--- | :--- |
| $T C-0$ | 8595188110075 |
| $T C-3$ | 859518810617 |
| $T C-6$ | 8595188110082 |
| $T C-12$ | 8595188110099 |
| $T Z-0$ | 8595188140591 |
| $T Z-3$ | 8595188110600 |
| $T Z-6$ | 8595188110594 |
| $T Z-12$ | 8595188110587 |
| PT100-3 | 8595188136136 |
| PT100-6 | 8595188136143 |
| PT100-12 | 8595188136150 |
| PT100 | |

- Thermister temperature sensors are made of Negative Temperature Co-efficient (NTC) embedded in a PVC or metal sleeve with a thermally-conductive sealer
- Sensor TC - lead-in cable to sensor TC is made of wire CYSY 2Dx0.5 mm/ $0.02^{\prime \prime}$

Sensor TZ - cable V03SS-F $2 \mathrm{Dx} 0.5 \mathrm{~mm} / 0.02^{\prime \prime}$ with silicone insulation for use in high temperature applications

- silicone insulation for use in high temperature applications
- Sensor PT100 - shielded silicon $2 \times 0.22 \mathrm{~mm}^{2}$ (AWG 21), shielding connected with a case
- Weight of sensors TC: Weight of sensors TZ: Weight of sensors PT100:
$-\mathrm{TC}-0-5 \mathrm{~g}(0.2 \mathrm{oz}) \quad-\mathrm{TZ}-0-.4.5 \mathrm{~g}(0.16 \mathrm{oz}$. $)$
- TC-3 - $108 \mathrm{~g}(3.8 \mathrm{oz}) \quad-$. TZ-3 $-106 \mathrm{~g}(3.74 \mathrm{oz}$.$) \quad - PT100-3-68 g(2.4 oz.)$
-TC-6-213 g (7.5 oz.) -TZ-6-216g(7.6 oz.) -PT100-6-149 g (5.3 oz.)
-TC-12-466 g(16.4 oz.) -TZ-12-418g (14.7 oz.) -PT100-12-249 g (8.8 oz.)

Technical parameters	TC	TZ	PT100
Range:	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$	$-40^{\circ} \mathrm{Cto}+125^{\circ}\left(-40^{\circ} \mathrm{Fto} 257^{\circ} \mathrm{F}\right)$	$-30^{\circ} \mathrm{Cto}+200^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.392{ }^{\circ} \mathrm{F}\right)$
Scanning element:	NTC 12K 5\%	NTC 12K 5\%	PT 100
In air/ in water:	(т65) $92 \mathrm{~s} / 23 \mathrm{~s}$	(t65) $62 \mathrm{~s} / 8 \mathrm{~s}$	(\%0.5) $\quad-/ 7 \mathrm{~s}$
In air/ in water:	(T95) $306 \mathrm{~s} / 56 \mathrm{~s}$	(T95) $216 \mathrm{~s} / 23 \mathrm{~s}$	(T0.9) $\quad-/ 19 \mathrm{~s}$
Cable material:	High temperature PVC	Silicone	Silicone
Terminal material:	High temperature PVC	Nickel plated copper	Copper
Protection degree:	IP 67	IP 67	IP 67

T65 (95): time, which sensor needs to heat up on 65 (95) \% of ambient temperature of environment, in which is located

Resistive values of sensors in dependance on temperature

Temperature $\left({ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\right)$	Sensor NTC $(\mathrm{k} \Omega)$	Sensor PT100 (Ω)
$20 / 68$	14.7	107.8
$30 / 86$	9.8	111.7
$40 / 104$	6.6	115.5
$50 / 122$	4.6	119.4
$60 / 140$	3.2	123.2
$70 / 158$	2.3	127.1

Tolerance of sensor NTC $12 \mathrm{k} \Omega$ is $\pm 5 \%$ by $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$.
Long-term resistence stability by sensor PT100 is 0.05% (10000 hours)

Sensor drawing

TZ-0 Temperature sensor can be connected directly to terminal block (lenght of sensor $110 \mathrm{~mm} / 4.33^{\prime \prime}$)
TZ-3 Temperature sensor 3 m (9.8^{\prime})
TZ-6 Temperature sensor 6 m (19.7')
TZ-12 Temperature sensor 12 m (39.4́)

Diagramm of sensor warm up via air

PVC-reaction Silicone-reaction
to water temperature from $22.5^{\circ} \mathrm{C}$ to $58^{\circ} \mathrm{C}$ (from $72.5^{\circ} \mathrm{F}$ to $136.4^{\circ} \mathrm{F}$)
to water temperature
from $22.5^{\circ} \mathrm{C}$ to $63.5^{\circ} \mathrm{C}$
(from $72.5^{\circ} \mathrm{F}$ to $144.5^{\circ} \mathrm{F}$)

Installation box LKM-45
Recommended installation box for wall mounting of THERMO thermostats

Type LKM-45, dimensions: $98 \times 98 \times 45 \mathrm{~mm}$, color: white EAN code: 8595188130806

Installation contactors

Installation contactors VS

Installation contactors with manual control VSM

VSM220
Number of contacts: 2x20A Configuration of switching and breaking contacts: breaking conta
$20,11,02$

VSM425
Number of contacts: $4 \times 25 \mathrm{~A}$ Configuration of switching and breaking contacts: $40,31,22,04$

Accessories

Contactror's loadability and dimensions

see page 108

- For switching electric circuits, especially for resistave loads
and three-phase induction motors
number of contacts VS120: 1
number of contacts VS220: 2
number of contacts VS420, VS425, VS440, VS463: 4
- It is produced in configuration of switching and breaking contacts:

VS120: 10, 01
VS220: $20,11,02$
VS420: 40, 31
VS425: 40, 31, 22, 04
VS440: 40, 31, 22, 04
VS463: 40, 31, 22

- Protection IP 20 - on request we deliver covers that ensure protection IP 40 for all terminals
- DIN rail or panel mounting

Technical parameters	VS120	VS220	VS420	VS425	VS440	VS463
Rated insulation voltage (Ui):	230 V	230 V	415 V	440 V	440 V	440 V
Rated thermo-current $\mathrm{I}_{\text {th }}$ (in AC):	20 A	20 A	20 A	25 A	40 A	63 A
Switched operation						
AC-1 for $400 \mathrm{~V}, 3$ phase:	x	X	13 kW	16 kW	26 kW	40 kW
AC-1 for 230 V :	$4 \mathrm{~kW}, 1$ phase	$4 \mathrm{~kW}, 1$ phase	$7.5 \mathrm{~kW}, 3$ phase	$9 \mathrm{~kW}, 3$ phase	$16 \mathrm{~kW}, 3$ phase	$24 \mathrm{~kW}, 3$ phase
AC-3 for $400 \mathrm{~V}, 3$ phase:	x	X	2,2 kW	4 kW	11 kW	15 kW
AC-3 for 230 V :	1.3 kW only $\mathrm{NO}, 1$ phase	1.3 kW only NO, 1 phase	1.1 kW, 3 phase	$2.2 \mathrm{~kW}, 3$ phase	5.5 kW , 3 phase	$8.5 \mathrm{~kW}, 3$ phase
AC-7a for $400 \mathrm{~V}, 3$ phase:	x	X	13 kW	16 kW	26 kW	40 kW
AC-7a for 230 V :	$4 \mathrm{~kW}, 1$ phase	4 kW , 1 phase	$7.5 \mathrm{~kW}, 3$ phase	$9 \mathrm{~kW}, 3$ phase	16 kW , 3 phase	24 kW , 3 phase
AC-7b for $400 \mathrm{~V}, 3$ phase:	x	x	2,2 kW	4 kW	11 kW	15 kW
AC-7b for 230 V :	1.3 kW only NO, 1 phase	1.3 kW only $\mathrm{NO}, 1$ phase	$1.1 \mathrm{~kW}, 3$ phase	$2.2 \mathrm{~kW}, 3$ phase	$5.5 \mathrm{~kW}, 3$ phase	$8.5 \mathrm{~kW}, 3$ phase
AC-15 for $400 \mathrm{~V}, 1$ phase:	4 A	4 A	4 A	4 A	4A	4 A
AC-15 for $230 \mathrm{~V}, 1$ phase:	6 A	6 A	6 A	6 A	6A	6 A
$D C 1 \mathrm{U}_{\mathrm{e}}=24 \mathrm{~V}$:	20 A	20 A	20 A	25 A	40 A	63 A
$D C 1 U_{e}=110 \mathrm{~V}$:	6 A	6A	2 A	6A	4 A	4 A
DC1 $\mathrm{U}_{\mathrm{e}}=220 \mathrm{~V}$:	0.6 A	0.6 A	0.5 A	0.6 A	1.2 A	1.2 A
Loadability of modular contactors see page143						
The max. number of switching for max. load:	600 switch/hr.	600switch/hr.	600 switch/hr.	600 switch/hr.	600 switch/hr.	600 switch/hr.
Electrical life in $230 / 400 \mathrm{~V}$						
AC-1- resistive load :	0.2×10^{6}	0.2×10^{6}	0.2×10^{6}	0.2×10^{6}	0.1×10^{6}	0.1×10^{6}
AC-3-power load:	0.3×10^{6}	0.3×10^{6}	0.3×10^{6}	0.5×10^{6}	0.15×10^{6}	0.15×10^{6}
AC-5a - high-intensity discharge lamp:	0.1×10^{6} by $30 \mu \mathrm{~F}$	0.1×10^{6} by $30 \mu \mathrm{~F}$	0.3×10^{6} by $36 \mu \mathrm{~F}$	0.1×10^{6} by $36 \mu \mathrm{~F}$	0.1×10^{6} by $220 \mu \mathrm{~F}$	0.1×10^{6} by $330 \mu \mathrm{~F}$
AC-5b - incandescent lamps :	0.1×10^{6} by 2 kW	0.1×10^{6} by 4 kW	0.1×10^{6} by 5 kW			
AC-7a - resistive household devices:	0.2×10^{6}	0.2×10^{6}	0.2×10^{6}	0.2×10^{6}	0.1×10^{6}	0.1×10^{6}
AC-7b - inductive household devices:	0.3×10^{6}	0.3×10^{6}	0.3×10^{6}	0.3×10^{6}	0.15×10^{6}	0.15×10^{6}
Minimal load:	$\geq 17 \mathrm{~V}, \geq 50 \mathrm{~mA}$	$\geq 24 \mathrm{~V}, \geq 100 \mathrm{~mA}$				
Short circuit protection with the fuse char. aM :	20 A	20 A	20 A	25 A	63 A	80 A
Coordination Type according EN 60 947-4-1:	2	2	2	2	2	2
Electrical strenght:	4 kV					
Contacts - max. cable size:						
Solid conductor:	AWG $7\left(10 \mathrm{~mm}^{2}\right)$	AWG 7 ($10 \mathrm{~mm}^{2}$)	AWG 10 ($2.5 \mathrm{~mm}^{2}$)	AWG $7\left(10 \mathrm{~mm}^{2}\right)$	AWG 3 ($25 \mathrm{~mm}{ }^{2}$)	AWG 3 ($25 \mathrm{~mm}^{2}$)
Stranded conductor:	$6 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}^{2}$	$16 \mathrm{~mm}^{2}$	$16 \mathrm{~mm}^{2}$
Maximal torque:	1.2 Nm	1.2 Nm	1.2 Nm	1.2 Nm	3.5 Nm	3.5 Nm
Coil - max. cable size:						
Solid conductor:	AWG 10 ($2.5 \mathrm{~mm}^{2}$)	AWG 10 ($2.5 \mathrm{~mm}^{2}$)	AWG $10\left(2.5 \mathrm{~mm}^{2}\right)$	AWG 10 ($2.5 \mathrm{~mm}^{2}$)	AWG 10 ($2.5 \mathrm{~mm}^{2}$)	AWG 10 ($2.5 \mathrm{~mm}^{2}$)
Stranded conductor:	$2.5 \mathrm{~mm}^{2}$					
Max.torque:	0.6 Nm					

Operating						
Coil control voltage:	$\begin{gathered} \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, 48 \mathrm{~V} \\ 110 \mathrm{~V}, 230 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, 48 \mathrm{~V}, \\ 110 \mathrm{~V}, 230 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \mathrm{AC} 24 \mathrm{~V}, 48 \mathrm{~V} \\ & 110 \mathrm{~V}, 230 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, 48 \mathrm{~V}, \\ 110 \mathrm{~V}, 230 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, 48 \mathrm{~V}, \\ 110 \mathrm{~V}, 230 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, 48 \mathrm{~V}, \\ 110 \mathrm{~V}, 230 \mathrm{~V} \end{gathered}$
Coil permanentsupply+/-10\%:	2.1 VA/2.1 W	2.1VA/2.1 W	$5 \mathrm{VA} / 1.5 \mathrm{~W}$	2.6VA/2.6W *	$5 \mathrm{VA} / 5 \mathrm{~W}$	$5 \mathrm{VA} / 5 \mathrm{~W}$
Coil gearsupply $+/-10 \%$:	2.1 VA/2.1 W	2.1 VA/2.1 W	$30 \mathrm{VA} / 25 \mathrm{~W}$	2.6VA/2.6W*	$5 \mathrm{VA} / 5 \mathrm{~W}$	$5 \mathrm{VA} / 5 \mathrm{~W}$
Mountingside by-side:	max. 2 contactors**					
Weight.	120 g (4.2 oz.)	$130 \mathrm{~g}(4.6$ oz.)	170 g (6 oz.)	213 g (7.5 oz.)	400 g (14 oz.)	400 g (14 oz.)
Dimensions:	$17.5 \times 85 \times 60 \mathrm{~mm}$	$17.5 \times 85 \times 60 \mathrm{~mm}$	$35 \times 62.5 \times 57 \mathrm{~mm}$	$35 \times 85 \times 60 \mathrm{~mm}$	$53.3 \times 84 \times 60 \mathrm{~mm}$	$53.3 \times 84 \times 60 \mathrm{~mm}$
	(0.7"x $3.355^{\prime \prime} \times 2.4{ }^{\prime \prime}$)	(0.7 " $\times 3.355^{\prime \prime} \times 2.4{ }^{\prime \prime}$)	(1.4" 2 $\left.^{2.7} 7^{\prime \prime} \times 2.24^{\prime \prime}\right)$	(1.4"x ${ }^{\text {a }} 3.355^{\prime \prime} \times 2.4{ }^{\prime \prime}$)	($\left.2.11^{\prime \prime} \times 3.31^{\prime \prime} \times 2.4{ }^{\prime \prime}\right)$	($\left.2.11^{\prime \prime} \times 3.31{ }^{\prime \prime} \times 2.4{ }^{\prime \prime}\right)$
Standards:		IEC 6094	IEC	60947-	DE0660	

* $3.8 \mathrm{VA} / 3,8 \mathrm{~W}$ for - 04 version of contacts
** Note: In case several contactors are mounted close to each other, you need to use a installation spacer between every other contactor. We offer installation spacer of type IKV.

EAN code
see page 122

Technical parameters:	VSM220	VSM425
Rated insulation voltage (Ui):	230 V	440 V
Rated thermo-current $\mathrm{t}_{\text {th }}$ (in AC):	20 A	25 A
Switched operation		
AC-1 for 400 V :	X	$16 \mathrm{~kW}, 3$ phase
AC-1 for 230 V :	$4 \mathrm{~kW}, 1$ phase	$9 \mathrm{~kW}, 3$ phase
AC-3 for 400 V :	X	$4 \mathrm{~kW}, 3$ phase
AC-3 for 230 V :	1,3 kW only NO, 1 phase	$2.2 \mathrm{~kW}, 3$ phase
AC-7a for 400 V :	X	$16 \mathrm{~kW}, 3$ phase
AC-7a for 230 V :	4 kW , 1 phase	$9 \mathrm{~kW}, 3$ phase
AC-7b for 400 V :	X	$4 \mathrm{~kW}, 3$ phase
AC-7b for 230 V :	1.3 kW only NO, 1 phase	2.2 kW , 3 phase
AC-15 for 400 V :	4 A	4 A
AC-15 for 230 V :	6 A	6 A
$D C 1 \mathrm{U}_{\mathrm{e}}=24 \mathrm{~V}$:	20 A	25 A
$D C 1 U_{\mathrm{e}}=110 \mathrm{~V}$:	6 A	6 A
$D C 1 U_{\mathrm{e}}=220 \mathrm{~V}$:	0.6 A	0.6 A
Loadability of modular contactors see page 147		
The max. number of switching for max. load:	600 switch/hr.	600 switch/hr.
Electrical life in $230 / 400 \mathrm{~V}$		
AC-1- resistive load :	0.2×10^{6}	0.2×10^{6}
AC-3-power load:	0.3×10^{6}	0.5×10^{6}
AC-5a - high-intensity discharge lamp:	0.1×10^{6} by $30 \mu \mathrm{~F}$	0.1×10^{6} by $36 \mu \mathrm{~F}$
AC-5b - incandescent lamps :	0.110^{6} by 1.5 kW	0.1×10^{6} by 1.5 kW
AC-7a - resistive household devices:	0.2×10^{6}	0.2×10^{6}
AC-7b - inductive household devices:	0.3×10^{6}	0.5×10^{6}
Minimal load:	$\geq 17 \mathrm{~V}, \geq 50 \mathrm{~mA}$	$\geq 17 \mathrm{~V}, \geq 50 \mathrm{~mA}$
Short circuit protection with the fuse char. aM :	20 A	25 A
Coordination Type according EN 60 947-4-1:	2	2
Electrical strenght:	4 kV	4 kV
Contacts - max. cable size:		
Solid conductor:	AWG $7\left(10 \mathrm{~mm}^{2}\right.$)	AWG 7 ($10 \mathrm{~mm}^{2}$)
Stranded conductor:	$6 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}^{2}$
Maximal torque:	1.2 Nm	1.2 Nm
Coil - max. cable size:		
Solid conductor:	AWG 10 ($2.5 \mathrm{~mm}^{2}$)	AWG 10 ($2.5 \mathrm{~mm}^{2}$)
Stranded conductor:	$2.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$
Max. torque:	0.6 Nm	0.6 Nm
Operating		
Coil control voltage:	$\begin{gathered} \mathrm{AC} 12 \mathrm{~V}, 24 \mathrm{~V}, 42 \mathrm{~V}, \\ 48 \mathrm{~V}, 110 \mathrm{~V}, 127 \mathrm{~V}, 230 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{AC} 12 \mathrm{~V}, 24 \mathrm{~V}, 42 \mathrm{~V}, \\ 48 \mathrm{~V}, 110 \mathrm{~V}, 127 \mathrm{~V}, 230 \mathrm{~V} \end{gathered}$
Coil permanent supply $+/-10 \%$:	2.8VA/1.2W	$5.5 \mathrm{VA} / 1.6 \mathrm{~W}$
Coil gear supply $+/-10 \%$:	$12 \mathrm{VA} / 10 \mathrm{~W}$	$33 \mathrm{VA} / 25 \mathrm{~W}$
Mounting side-by-side:	max. 2 contactors*	max. 2 contactors*
Weight:	140 g (4.9 oz.)	260 g (9.17 oz.)
Dimensions:	17,5885x60 mm	$35 \times 85 \times 60 \mathrm{~mm}$
	(0.7"x $3.35{ }^{\prime \prime} \times 2.4{ }^{\prime \prime}$)	(1.4 $4^{\prime \prime} \times 3.35{ }^{\prime \prime} \times 2.4{ }^{\prime \prime}$)

Connection VSM220	VSM220-only AC supply voltage
VSM220-20	VSM220-11
VSM220-02	
Connection VSM425	VSM425-only AC supply voltage
VSM425-40	

VS425-31

VSM425-22

VSM425-04

Auxiliary contacts VSK-11 and VSK-20

Datas of auxiliary contacts for VSK-11 and VSK-20 see page 108

Standards:
IEC 60947-4-1, IEC 60947-5-1, IEC61095, EN 60947-4-1, EN 61095,VDE0660
*Note: In case several contactors are mounted close to each other, you need to use a installation spacer between every other contactor. We offer installation spacer of type IKV.

EAN codes for VS

VS120		VS220	
VS120-01 24V AC/DC	8595188129848	VS220-02 24V AC/DC	8595188129381
VS120-01 230V AC/DC	8595188123105	VS220-02 110V AC/DC	8595188138628
VS120-1024V AC/DC	8595188129367	VS220-02 230V AC/DC	8595188121422
VS120-10 230V AC/DC	8595188123112	VS220-1124V AC/DC	8595188129374
		VS220-11 48V AC/DC	8595188129398
	VS220-11110V AC/DC	8595188130790	
	VS220-11230V AC/DC	8595188121408	
		VS220-2024V AC/DC	8595188125253
		VS220-20 48V AC/DC	8595188129411
		VS220-20110V AC/DC	8595188129428
		VS463	
VS440		VS463-22 24V AC/DC	8595188129794
VVS440-04 24V AC/DC	8595188129299	8595188121392	
VS440-04 110V AC/DC	8595188129305	VS463-22 230V AC/DC	8595188121514
VS440-22 24V AC/DC	8595188129787	VS463-31 24V AC/DC	8595188129596
VS440-22 230V AC/DC	8595188121477	VS463-31 110V AC/DC	8595188137904
VS440-31 24V AC/DC	8595188129572	VS463-31 230V AC/DC	8595188121507
VS440-31 230V AC/DC	8595188121460	VS463-40 24V AC/DC	8595188129589
VS440-40 24V AC/DC	8595188129565	VS463-40 110V AC/DC	8595188140652
VS440-40 110V AC/DC	8595188138567	VS463-40 230V AC/DC	8595188121491
VS440-40 230V AC/DC	8595188121453		

VS420 VS425
VS420-3124V AC 8595188129442 VS420-31110V AC 8595188129466 VS420-31230V AC 8595188121446 VS420-40 12V AC 8595188129459 VS420-40 24V AC 8595188129435 VS420-40 48V AC 8595188138581 VS420-40 230V AC 8595188121439

VS425-04 24V AC/DC 8595188129527 VS425-04 48V AC/DC 8595188129558 VS425-04110V AC/DC 8595188143820 VS425-04230V AC/DC 8595188121682 VS425-13 230V AC/DC 8595188129473 VS425-22 24V AC/DC 8595188129541 VS425-22 230V AC/DC 8595188121675 VS425-31 24V AC/DC 8595188129497 VS425-31 48V AC/DC 8595188137898 VS425-31110V AC/DC 8595188129534 VS425-31230V AC/DC 8595188121668 VS425-40 24V AC/DC 8595188129480 VS425-40 48V AC/DC 8595188136174 VS425-40 230V AC/DC 8595188121651 VS425-40 400V AC/DC 8595188129503

EAN codes for VSM

VSM220
VSM220-02 24V AC 8595188129817 VSM220-02 230V AC 8595188128100 VSM220-11 24V AC 8595188129800 VSM220-11 230V AC 8595188128094 VSM220-20 12V AC 8595188138369 VSM220-20 24V AC 8595188128117 VSM220-20 230V AC 8595188128087

VSM425
VSM425-0424V AC 8595188129831 VSM425-04230V AC 8595188128155 VSM425-22 24V AC 8595188129336 VSM425-22 230V AC 8595188128148 VSM425-3124V AC 8595188129824 VSM425-31 42V AC 8595188160247 VSM425-31 230V AC 8595188128131 VSM425-40 12V AC 8595188143820 VSM425-40 24V AC 8595188128162 VSM425-40 230V AC 8595188128124

VSK-11 8595188121613 VSK-20 8595188121606Main regulations for correct use of products110
Product loadability 111-112
Electro-magnectic compatibility of products 113
EMC chart 114
Overview of tested types of light sources 115
and the loads
Complementary information
Products packing 116
Dimensions 117-121
Examples of usage 122-129
Use of the products in domestic installations 131
Use of the product in the industry 132
Support of project designing 133
Production technology 134-135

To ensure correct and perfect function of a device and its safe operation, it is necessary to ensure and observe several main regulations:

1.) Device supply

- it is necessary to ensure continuous supply of the device without drops and voltage peaks. It is mainly important for device (e.g. dimmers) where there is synchronization managed by sine wave of the main and fault in the main ca cause unreliable function of the device
- it is necessary to observe correct connection of terminals, and in case of DC supply voltage also polarity.
- it is necessary to observe allowed tolerance of the size of supply voltage which is given by technical parameters of individual devices

2.) Protection of the device

- it is necessary to ensure protection of the device by adequate elements of overvoltage protection - by fuses, by surge arrestors
3.) Elimination of disturbances on input circuits
- it is recommended to eliminate disturbances on control inputs of devices by suitable elements (R - C elements) and thus minimize creation of inductive voltage on incoming wires - pay attention when connecting control inputs and while keep in mind max. current and min. voltage at rest, which can cause spontaneous switching of device (e.g. connected glow lamps)

4.) Opereting conditions

- to assure the granted life and correct functions of device, there is not recommended to leave the device in extreme conditions that could negative way influence the correct device functions - permanent temperature influence over 70°, aggressive exhalations, chemicals, high relative humadity over 95%, high electromagnetic field or microwave radiation - for error-free function it is necessary to avoid device placement close to electromagnetic interference source
- all mentioned products fulfill the EMC requirements in accordance to EU Directive 89/336/EEC. Notwithstanding it is necessary to pay attention by device connecting to circuit with electrical appliances that produce electromagnetic interference (contactors, motors), and pay attention to close power cables. It is recommended that device connecting cables (supply and control inputs) are possibly short and go separately from power cables. In case the device is connected to circuit with contactors or motors it is necessary to protect the device with appropriate extern protection components - RC members, varistors or surge voltage protector.
- when you use AL wires, it is necessary to follow requirements of ČSN standard 370606: 1959 and ČSN 370606 amendment 2: 1992

5.) Device handling and using

- input terminals do not fill-in with high power (for serial terminals max $0.5 \mathrm{~N} / \mathrm{m}$), do not give excessive pressure to carrier terminal parts to avoid demage of inner device construction - protect the device before falls and excessive vibrations that could demage relays contacts
- do not overload input relay's contacts, especially when using loads with other category then AC1
- when at switching of big loads the relay contacts get sealed it is necessary to use inserted contactor or power relay tuned to required load for given application

Description of used protection elements in device

All time and monitoring relays from our assortment are equiped with protective elements (varistors) against possible overvoltage in supply main. Limit voltage of used varistors is 275 V . At short-time overvoltage in supply main varistor decrease its leak resistor and accumulate arosen overvoltage. When this overvoltage behave as short-time peak, varistor is able to react and protect the device against negative influences. As other protection elements there are used transils and zener diodes that eliminate overvoltage impulses in supply and input circuits of device (e.g. when switching inductive loads). In case of switching inductive loads it is recommended to separate a supply of power element (motors, contactors etc.) from supply of measuring and control device inputs.

On the charts bellow you can see oscilographic running of disconnecting of loads (contactors) and reaction of protective elements to arosen voltage pikes.

Process of disconnection of contactor with coil on 230V/AC without R-C member

Process of disconnection of contactor with coil on 230V/AC and R-C member $3900 \mathrm{hm}-330 \mathrm{nF}$

Process of disconnection of contactor with coil and limited varistor on 230V/AC

Problematic choice of suitable relay contact for a particular load switched with a product is described below.
Mostly we experience problems with incorrect choice of load (meaning incorrect relay for a particular load) which results in permanent switching of contact (sealing) or damage on relay contact - which then results in malfunction.
What load can you use?
Detailed types of load according to standard EN 60947 are described in charts below - categories of use.

Category of use	Typical use	EN
AC current, $\cos \varphi=\mathrm{P} / \mathrm{S}(-)$		
AC-1	Non-inductive or slightly inductive load, resistance furnace Includes all appliances supplied by AC current with power factor (cos.) 0.95. Examples of usage: resistance furnace, industrial loads	60947-4
AC-2	Motors with slip-ring armature, switching off	60947
AC-3	Motors with short-circuit armature, motor switching when in operation This category applies to switching off motors with short-circuit armature while in operation. While switching, contactor switches current which is 5 up to 7 times rated current of motor.	60947-4
AC-4	Electro-motors with short-circuit armature: start up, braking by backset, changeover	60947
AC-5a	Switching of electrical gas-filled lights, fluorescent lights	60947-4
AC-5b	El. bulb switching Enables low contact loading due to resistance of cold fiber is many times smaller that the one of hot fiber.	60947-4
AC-6a	Switching of transformers	60947-4
AC-6b	Switching of capacitors	60947-4
AC-7a	Switching low inductive loads of home appliances and similar applications	60947
AC-7b	Load of motors for home appliances	60947
AC-8a	Switching of hermetically sealed motors of cooling compressors with manual reset switches against overload Hermetically sealed cooling compressors have to be placed in one box without external shaft or shaft padding and motor must operate with cooling liquid	60947
AC-8b	Switching of hermetically sealed motors of cooling compressors with manual reset switches against overload Hermetically sealed cooling compressors have to be placed in one box without external shaft or shaft padding and motor must operate with cooling liquid	60947
AC-12	Switching of semiconductor loads with separation transformers	60947-5
AC-13	Switching of semiconductor loads with separation transformers	60947-5-1
AC-14	Switching of low electro-magnetic loads (max. 72 VA)	60947-5-1
AC-15	Management of alternating electro-magnetic loads This category applies to switching inductive loads with input for closed electro-magnetic circuit higher than 72 VA Use: switching coils of contactors	60947-5
AC-20	Connecting and disconnecting in unloaded states	60947-3
AC-21	Switching resistive loads, including low loading	60947-3
AC-22	Switching of mixed resistive and inductive loads, including low overloading	60947-3
AC-23	Switching of motor loads or other high inductive loads	60947-3
AC-53a	Switching of motors with short-circuit armature with semiconductor contactors	60947
$D C$ current, $t=L / R(s) \quad$ Note: Category AC 15 replaces formerly used category AC 11		
DC-1	Non-inductive or low inductive load, resistive furnaces	60947-4
DC-3	Shunt motors: start-up, braking by backset, reversion, resistive braking	60947-4-1
DC-5	Series motor: start-up, braking by backset, reversion, resistive braking	60947-4-1
DC-6	Non-inductive or low inductive loads, resistive furnaces - el. bulbs	60947-4-1
DC-12	Management of resistive loads and fixed loads with insulation by opto-electric element	60947-5-1
DC-13	Switching of electromagnets	60947-5-1
DC-14	Switching of electromagnetic loads in circuits with limiting resistor	60947-5-1
DC-20a(b)	Switching and breaking without load(a: frequent switching, b: occasional switching)	60947-3
DC-21a(b)	Switching ohmic loads including limiting overloading (a: frequent switching , b: occasional switching)	60947-3
DC-22a(b)	Switching of compound ohmic and inductive loads including limited overloads (e.g. shunt motors) (a: frequent switching, b: random switching)	60947-3
DC-23	Switching of highly inductive loads (e.g. series motors)	60947-3

How can you distinguish for which load is our product (relay) designated?
Our company record this information on a products and also in our catalogue, instruction manual and other promotional and technical material (website etc.).
It is important to realize that it is not always possible to point out load because of lack of information about the device (user cannot measure cos) or it is not possible because of inconstancy of parameters of switched device.
Manufacturer of relays records always guaranteed parameters in ideal conditions which are done by a norm (temperature, pressure, humidity, etc.) and reality can be in a lot of cases different. Category of use (classification) of a particular relay is done by material of output contacts.
Basic types of materials which are used for production of contacts for high-performance relay are:
a) AgCd - suitable for switching ohmic loads. Before of harmfulness of Cd, this type of contact is remitted.
b)AgNi -designated for switching resistive loads, good quality switching and conducting (contact doesn't oxidate) small currents/voltages, it is not designated for surge currents and loads with inductive component
c)AgSn or AgSn0 -suitable for switching loads with inductive component, not suitable for switching small currents/voltages, it is more resistive to surge currents, suitable for DC voltage switching, less suitable for switching loads of ohmic type
d) Wf (wolfram)-special contact designated for switching surge currents with inductive component
e)with gold (AgNi/Au)- Used for "improving" contacts for low currents/ voltages, prevents oxidation.

Electromagnetic compatability (EMC) is a new scientific field which was founded in the 60 s last century. It had been known only to a small number of specialists working in a military and cosmic research.
Electromagnetic compatability EMC is defined as an ability of a device, system or a machine to show the correct operation even in an environment in which there are other sources of electromagnetic signals (natural or artificial), and also an ability not to influence negatively the environment by its own "electromagnetic action" and not to radiate signals that would disturb other devices. It is an indicator of good quality and reliability. Breach of such EMC requirements may cause several damages with catastrophical consequences.
When testing EMC of a device (technical and biological), basic is represented by so called " fundamental chain of EMC" shown in the picture. This chain shows a system problematic of EMC and we inspect all three components.

SOURCE OF ELECTROMAGNETIC DISTURBANCES	ENVIRONMENT OF DISTRIBUTION, ELECTROMAGNETIC STRUCTURE
motors, switches, relays, power distributions, semi-conducting alternators, fluorescent tubes, arc furnances, welding machines, oscillators, PC, digital systems, electrostatic discharge...	air space, energy cables, supply convection, convection, grounding, screening, signaling conductors, data condutors...

Test SURGE

For guarantee the immunity of our devices against to electromagnetic disturbance we are doing EMC tests and according results we are still innovating our product to be accoding the EMC norms with reserve. The most important test is immunity against gust of high-energy voltage and current impulse (SURGE), what is made according the norm IEC 61000-4-5.
By this our products are controlled in case of short time pulse, what is apllicated as to input as to output circuits of divices, to switching inputs, sensing inputs, etc. Our produts pass all criterias and are fully competitive to foreign products.
Test SURGE is used in practice mainly for 1-phase devices with take-off current to 16 A. It makes use of voltage impulse $1,2 / 50 \mathrm{~ms}$ no load and current impulse $8 / 20 \mathrm{~ms}$ for short time. Size of used voltage impulse is $0.5 \mathrm{kV}, 1 \mathrm{kV}, 2 \mathrm{kV}$ and 4 kV , size of used current impulse is 2 kA on 4 kV with choise of changing polarity. For testing by impulses is as coup mode specify capacitive coupling.

Test BURST

Other very important test is test immunity against quick short-lived effect (couple of impulses- BURST), which dissimulated influence if industry disturbance. Test is made according to the norm IEC 61000-4-4.
Disturbance signal is injected to supply circuits and communication cabling. Coupling is made by 1-phase capacitive circuit or coupling capacitive ribband to supply, signalling or data convection of tested device. Size of testing impulses is $0.5 \mathrm{kV}, 1 \mathrm{kV}, 2 \mathrm{kV}$ and 4 kV in possitive and negative polarity. Repeat frequence is 2.5 kHz , or 5 kHz . Period of testing $0-6$ minut by steps for 0.1 s .

Test POWERFAIL

For right function of products in industry is important POWERFAIL test - simulation of decreasing and failure of supply voltage. It is made according to the IEC 61000-4-11.
Short-time supply decreasing are random decreasing of supply voltage, which are more than $10-15 \%$ of its nominal size and have short time existing $0.5-50$ periodes of basic frequency 50 Hz .
Short breaks of voltage are short time decreasing over 100%. Mentioned changes of supply circuit voltage are made in practise by disturbance in mains (high voltage, low voltage) and breaks on load of the main.

Test of EMC EMISSIONS

Electronic devices must be designed not to be a source of oversize electric or electromagnetic disturbances in its surroundings. Test is executed according to standard EN 55022.
Emissions are measured by wires or by air.

Test OF ELECTROMAGNETIC HIGH-FREQUENCY FIELD AND HF SIGNAL COMING FROM THE MAIN

The purpose of this test is to verify immunity of the device against electromagnetic fields that are created by radio transmitters or by any other device which transmits electromagnetic energy by uninterrupted waves (walkie-talkies, radio and TV transmitters.)
Test is carried out against disturbances in the main and emissions. We apply testing level 3 which for HF field means intensity of field $10 \mathrm{~V} / \mathrm{m}$ and for HF signal it is voltage level 10 V .

Test OF ELECTROSTATIC DISCHARGE

It is a test of resistance against discharges of electrostatic energy caused by servicing or by surrounding objects. Such discharge can damage a device or its components.
Test is carried out by direct or indirect application of discharges to a tested device. Test is carried out according to a standard EN 61000-4-2. Direct influence of discharges is targeted into such places and surfaces that are accessible to servicing during common use. Indirect influence of discharge is done by horizontal and vertical coupling board.
The device is treated by at least ten individual discharges for positive and negative polarity. Testing levels are $2 \mathrm{kV}, 4 \mathrm{kV}, 6 \mathrm{kV}, 8 \mathrm{kV}, 15 \mathrm{kV}$.

Company ELKO EP has its own test laboratory in which it carries out pre-certification for conditions that must be met by each of our products. Thus customers gets not only a product of a high quality, which is ensured by many years of experience in the field of switching relays, but also a product which can operate in demanding conditions of industrial environment. Product, tested this way, guarantees reliability and functionality to customer's full satisfaction.

Time relays			
CRM-81J/230V	3	3	55022/A
CRM-81J/UNI	3	3	55022/A
CRM-83J/230V	3	3	55022/A
CRM-83J/UNI	3	3	55022/A
CRM-82T0	3	3	55022/A
SJR-2/230V	3	3	55022/B
SJR-2/UNI	3	3	55022/A
CRM-2T/230V	3	3	55022/B
CRM-2T/UNI	3	3	55022/A
CRM-2H/230V	3	3	55022/A
CRM-2H/UNI	3	3	55022/A
CRM-91HE/UNI	3	3	55022/A
CRM-2HE/UNI	3	3	55022/A
CRM-91H/230V	3	3	55022/B
CRM-91H/UNI	3	3	55022/A
CRM-93H/230V	3	3	55022/B
CRM-93H/UNI	3	3	55022/A
CRM-9S	-	3	61000-6-3
CRM-61	3	2	61000-6-3
SHT-1	3	3	55022/A
SHT-1/2	3	3	55022/A
SHT-3	3	3	55022/A
SHT-3/2	3	3	55022/A
PDR-2A/230V	2	3	61000-6-3
PDR-2A/UNI	3	3	61000-6-3
PDR-2B/230V	2	3	61000-6-3
PDR-2B/UNI	3	3	61000-6-3
PRM-91H/8	3	3	55022/B
PRM-91H/11	3	3	55022/B
PRM-92H	2	3	55022/A
PRM-2H	2	3	55022/A
SMR-T	2	2	61000-6-3
SMR-H	2	2	55022/A
SMR-B	2	2	61000-6-3
CRM-4	3	3	55022/B
CRM-42	3	3	55022/A
Power and auxiliary relays			
VS116K	3	3	55022/A
VS116U	3	2	55022/A
VS308K/230V	3	3	61000-6-3
VS308K/UNI	3	2	55022/B
VS308U	3	2	55022/A
VS316/24V	3	-	-
VS316/230V	3	3	55022/B
Dimmers			
DIM-2	2	2	61000-6-3
DIM-5	2	2	61000-6-3
DIM-14	2	2	55022/B
DIM-6	2	2	55014-1
DIM6-3M-P	2	2	55014-1
DIM-15	2	2	55014-1
SMR-S	2	2	55022/A
SMR-U	2	2	55022/B
DIM-10	2	2	55022/B

Power supplies			
PS-10-12; PS-10-24	3	3	55022/B
PS-30-12; PS-30-24	3	3	55022/B
PS-100-12; PS-100-24	3	3	55022/B
PS-30R	3	3	55022/A/B
ZSR-30	3	3	61000-6-3
ZNP-10-12V	-	3	55022/B
ZNP-10-24V	-	3	55022/B
Other modular devices			
SOU-1/230V	3	3	61000-6-3
SOU-1/UNI	3	2	55022/A
SOU-2	3	3	61000-6-3
SOU-3	3	3	55022/B
MR-41/230V	3	3	55022/A
MR-41/UNI	3	3	55022/A
MR-42/230V	3	3	55022/A
MR-42/UNI	3	3	55022/A
Monitoring relays			
HRN-41	3	3	61000-6-3
HRN-42	3	3	61000-6-3
HRN-33	3	3	55022/A
HRN-34	3	-	
HRN-35	3	3	55022/A
HRN-37	3	3	55022/A
HRN-63	3	3	55022/A
HRN-64	3	-	-
HRN-67	-	-	-
HRN-55	3	3	55022/B
HRN-55N	3	3	55022/B
HRN-57	3	3	55022/B
HRN-57N	3	3	55022/B
HRN-54	3	3	55022/B
HRN-54N	3	3	55022/B
HRN-56/120	3	3	55022/B
HRN-56/208	3	3	55022/B
HRN-56/240	3	3	55022/B
HRN-56/400	3	3	55022/B
HRN-56/480	3	3	55022/A
HRN-56/575	3	3	55022/A
HRN-43	3	3	55022/A
HRN-43N	3	3	55022/A
PRI-32	3	3	61000-6-3
PRI-51/1	3	3	61000-6-3
PRI-51/2	3	3	61000-6-3
PRI-51/5	3	3	61000-6-3
PRI-51/8	3	3	61000-6-3
PRI-51/16	3	3	61000-6-3
PRI-51/0.5	3	-	-
PRI-52	3	3	55022/A
PRI-41	3	3	61000-6-3
PRI-42	3	3	61000-6-3
HRH-1/230V	3	3	55022/A
HRH-1/24V	3	3	55022/A
HRH-1/110V	3	3	55022/A
HRH-5	3	3	61000-6-3

HRH-4/230V	3	3	55022/B
HRH-4/24V	3	3	55022/B
HRH-6/AC	3	3	61000-6-3
HRH-6/DC	3	-	-
COS-1	3	3	55022/A
Thermostats			
TER-3A	3	3	55022/B
TER-3B	3	3	61000-6-3
TER-3C	3	3	55022/B
TER-3D	3	3	61000-6-3
TER-3E	3	3	55022/B
TER-3F	3	3	55022/B
TER-3G	3	3	55022/B
TER-3H	3	3	55022/B
TER-4/230V	3	3	55022/B
TER-4/24V	3	3	-
TER-9/230V	3	3	55022/B
TER-9/24V	3	3	-
TER-7	3	3	55022/B
ATR; ATC; ATF	2	2	55022/B
DTR; DTC; DTF	2	2	55022/B
TEV-1	3	3	55022/B
TEV-2	3	3	55022/B
TEV-3	3	3	55022/B
TEV-4	3	3	55022/B
RHT-1	3	3	55022/B
RHV-1	3	3	55022/B

As is our good tradition, we have always been seeking for a maximum universality of our products. We have successfully developed a dimmer DIM-15 and SMR-M, and because the LED lighting dimming - as well as dimming of energy saving lamps - is a relatively new area and there are not so many manufacturers who produce dimmable energy saving resources, we will gradually test and expand the chart below. We welcome your feedback and cooperation in addressing us your comments and new types.

Type	Light sources ELKO Lighting	Socket	Dimmable	DIM 15	SMR-M	LIC-1	$\begin{aligned} & \text { RFDSC-11 } \\ & \text { RPDC }(-1) \end{aligned}$	RfPEL-71]
\%	ELK0 Lighting DLB-E27-806-2K7	E27	Yes	30 pc	16 pc	30 pc	30 pc	16 pc
\%	ELK0 Lighting LED DLSL-GU10-250-3K	GU-10	Yes	50 pc	26 pc	50 pc	50 pc	26 pc

Type	Light sources from manufacturers	Socket	Dimmable
*	Brilum LED line 181ed	GU-10D	Yes
\%	Brilum LED line	GU-10P	Yes
(0)	Brilum LED line JCR-27D 48Led	E27	Yes
(\%)	Elim SMD-W12	GU-10	Yes
\%	Elim SDW21	GU-10	Yes
(0)	Elim SMD-W20	GU-10	No
\%	Panlux E27L1-81120/T	E27	No
\%	LED LAMPJDRE27	E27	Yes
(\%)	Brilum Led line white 21led	GU10D	Yes
4	Osram dulux el.dimmable lumilux warm white 1230lm	E27	Yes
0	Megaman dimmerable 2700K DEC01	E14	Yes
\%	Lumee GU 10-60-CW-120	GU-10	Yes
(*)	Lumee GU 10-P-60-CW-120	GU-10	Yes
\%	Lumee JDRE 14-60-CW-120	E14	Yes
(\%)	Lumee Ball-80-CW	E14	Yes
0	Philips Master 20W	E27	No
*	Led Osram Decospot 0,75W	GU-10	No
*	Led Philips Master 7W	GU-10	No
*	Philips LEDspot MV 4W GU10 40D	GU-10	Yes
\%	Philips LEDspot MR 16 LV 4W GU5,3 24D	GU-5.3	No
*	Philips LEDspot MV 3W GU10 25D	GU-10	No
*	Energetic BULB Warm White 250 Lumen	E27	Yes
*	Energetic BULB Clear Warm White 250 Lumen	E27	Yes
*	Energetic Warm White Reflector GU10 600 CD	GU-10	Yes
*	Energetic Cool White Reflector GU10 550 CD	GU-10	Yes
\%	Energetic Warm White Dimmer 1200 Lumen	E27	Yes
\%	Energetic Wram White 3 Step Dimmer 1300 Lumen	E27	No
*	Energetic Wram White 3 Step Dimmer 520 Lumen	E27	No
\%	TR-OWGE-05	E27	No
\%	Paulmann reflector electrobnic 7W GU 10	GU-10	No
(\%	Osram parathom classic A 40	E27	No
\%	Osram parathom classic B 25	E14	No
\%	Osram parathom PAR16	GU-10	No
3	EMOS 481ed 2W	E14	Yes
\%	EMOS dimmable saving fluorescent lamps 20W	E27	Yes

| Products | Packing |
| :--- | :---: | :---: |
| COS-1, HRH-1, HRN-41, HRN-42,
 HRN-43, PDR-2, PRI-41, PRI-42,
 PS-12, PS-24, PS-R, ZSR-30,
 ZNP-10, ZTR-10, HRN-56/480,
 575 | Packing of 3-MODULE relay-1 pc |
| SHT-1, SHT-3, SHT-1/2, SHT-4, | |
| SOU-2, TER-9, | |\quad Packing of 2-MODULE relay-1 pc

2-MODULE DESIGN

SOU-3

3-MODULE DESIGN

RHV-1, TEV-4

ATR, ATF, ATC

PANEL PDR-2/A, PDR-2/B

HRN-41, HRN-42, HRN-43,HRN-43N, PRI-41, PRI-42, COS-1, HRH-1, TER-4

DTR, DTF, DTC

PANEL ZSR-30, PS-30-R, ZNP-10
PS-100-12, PS-100-24

PS-30-12, PS-30-24

PS-10-12, PS-10-24 6-MODULE DESIGN

ES-11

ES-8

750L

782L

HRH-6

external potentiometer for CRM-2HE, CRM-91HE

VS120

| VS220 |
| :--- | :--- |
| VSM220 |

VSM425

VS420

Examples of usage

Multifunction time relay CRM-91H,CRM-93H

- for electric appliances, where is necessary to change the exact timing - controlling of the illumination, heating, motors, machines, ventilators, contactors...

Multifunction time relay with external potentiometer CRM-91HE

- time adjusting via external operating unit, operating on panel, switchboard doors

Multifunction time relay with contactless output CRM-9S

- using for warning illuminatin on the road, flashers, cyclers, often switched systems ...

Singlefunction time relay CRM-81J

- time switch, using for run down the pump after switch off the heating, switching of ventilators ...

Multifunction time relay CRM-61

- for electronic appliances, light control, heating, motors, fans.....

Time relay plug-in type PRM-91H, PRM-92H

- serves to control light signallization, heating, motor and fan control... etc.

Doublestage delay unit SJR-2

- for sequential load switching, electric furnaces, heaters....

Staircase switch CRM-4

- staircase automatic systems, ventilators switching, for multiplace operating illumina-
tion on the staircases and halls...

Delay OFF without supply voltage CRM-82T0

- delayed back-up switch off at current failure (emergency illumination, emergency respirator)

Asymmetric cycler CRM-2H

- regular rooms ventilation, cyclic humidity exhaustion, illumination controlling, circulation pump, flash, warning appliances, regular pump down, regular irrigation via electromagnetic valve

Progammable staircase automat with signalling before switch off CRM-42

- starcaise illumination operation
- on-coming switch off signalling (flash = comfort + safety together)

Digital time switch SHT-1/2

- for controlling of all appliances that depend on real time, appliances could be controlled in regular cycles, or according to adjusted program (blocking of main door out of working hours or night)
- in combination with other devices could be controlling combinated (rooms ventilation, irrigation controlling, bell at school or in church...)

Programmable digital relay PDR-2

- illumination, ventilators, contactors controlling, controlling of interlocking plans, system of time abate and blocking (billiards, pin-balls....), away control via external buttons

Twilight switch SOU-1

- outdoor illumination switching (garden illumination), flash, shop-window, hall and office illumination (switch off in desired light level, controlling of intensity)

Delay on star/delta CRM-2T

- motor starting more than 3 kW , electronic switchover from mode start to mode operation with device CRM-2T, what assures exact timing

Mini contactor VS425

- switching of the higher loads, especially in other categories than AC1

Modular contactor VS120. VS220.VS420. VS425

- to switch circuits for supply and control of heating, lights, air-conditioning and other el. devices. Switches loads AC-1, AC-3, AC-7a, AC-7b, AC-15

Auxiliary plug-in relays 750.782

- to switch bigger output (load)

Modular contactors VS440. VS463

- to switch supply and control circuits for heating, air-conditioning and other el. devices, switching 3-phase motors
Switches loads A-1, AC-3, AC-7a, AC-7b, and AC-15

Digital time switch SHT-1, SHT-1/2

- for controlling of all appliances that depend on real time, in daily or weekly mode

Staircase automat with dimming DIM-2

- step by step (fluent) dim up, adjusted time is ON and fluent dim down (e.g. possible to adjust permanent shine to min . brightness everlasting light)
- block of flats (entry, halls, staircases), garden lighting

Memory relay MR-41, MR-42

- because of 2-wire parallel buttons connection save money, place and time during the installation
- light switching, hall, staircase, big rooms, controlling systems, automation

Switching power supply PS-R

- power supply of any devices and appliances via safe voltage with full galvanically separated from mains
- power supply of driving systems, interlocking plants and use in measurement and control

Controlled dimmer DIM-5

- short press ON/OFF, long press - brightness regulation, is in memory. Other presses activate memory
- switch on and dimming of hall, staircase ...

Power relays VS

- switching of higher load than is capacity of switched unit = repeater - assistant light controlling, signalling, boilers, ...

Controlling and signalling units USS

- compact dimensions, elegant design, wide range of use, configuration for request - switching and signalling in switchboard, controlling centre, automation...

Monitoring voltage relay HRN-33 (35)

- monitoring of mains voltage for appliances inclinable to supply tolerance

Monitoring voltage relay HRN-33 (35)

- protection of appliances against under-/overvoltage

Monitoring voltage relay HRN-35

- start of back-up supply in case of failure

Monitoring voltage relay HRN-34

- load disconnected when voltage declines or battery is discharged

Monitoring current relay PRI-51, PRI-32

- current-limiting relay (on one branch two appliances, which never work together), controlling systems, motors, heating, current indication, controlling of 1-phase motor run down,
during the installation of main housing switchboard could be controlled via eye, if the cooker is not switched
- in connection with current transformers, it is possible to extend current ranges up to 600 A , which makes more things possible

Relay monitoring power factor $\operatorname{COS}-1$

- monitors power-factor in 3-phase mains / unloading of motors, pumps, lift systems

Relay monitoring sequence and failure of phases HRN-55, HRN-55N - monitoring of proper motor rotation, electric drive, etc.

Monitoring voltage relay for under/vervoltage for 3-phase mains HRN-54

- confortable monitoring of 3-phase mains

Relay monitoring over-/undervoltage in 3-phase mains HRN-54N - monitoring voltage in switchboard, protection of appliances

Monitoring current relay PRI-41 (PRI-42)

Monitoring voltage relay HRN-43

- regulation of voltage from generator, water el. plants, 3-phase control in the main - monitors and protects main's quality

- monitoring over-/-underload (machine, motor ...)
- monitoring consumption, diagnostics of distant appliance (short circuit, increased consump. ...)

Level switch HRH-1

- monitoring level in wells, tanks, pools, etc.

Level switch HRH-5

- monitoring level in well, sump, tanks, pool, silo...

Enjoy complet houseno

Our aim is to give a complete care to all electro project designers.

Our activities:
Our products are a part of the following programs:

Project programs

Tecscad

ELCAD
eplectric
el
PEchematic

Award programs
VeroX
Obis
OCEP
SELPO Broumy

DTB ELKO EP XLS

ELEE XLS

MARKS AND SYMBOLS DWG

DWG

TRAINING
In case our products attracted your interest, do not hesitate to contact us at elko@elkoep.com or see our websites www.elkoep.com for more information.

TECHNICAL SUPPORT

In case of any questions regarding use of our products for a particular project, contact us at support@elkoep.com
Note.: logos, names, software, hardware are protected by owner's rights.

The base of the production is a modern line disposing of SMD technology. SMD components compose of more than 80% of all components. In the year 2004 the production line was modernized distinctly and it was completed by some new machines. Herewith the accurancy improved considerably and the capacity enhanced.

1)

Printed circuit boards are placed into a cartridge and then automatically delivered to SMD production line.

3)

SMD components are mounted by pick-up machines.
Three heads with laser alignment can place up to 15,000 components an hour. This machine replaces approximately 100 workers.

5)

Hot-air furnace ERSA serves for glue hardening or to activation of soldering flux by re-melting. The furnace has 3 zones. temperature after curing on 3rd) output) zone approx. 1400C. For flux re-melting, the starting temperature is $130^{\circ} \mathrm{C}$, middle $180^{\circ} \mathrm{C}$ and output is $280^{\circ} \mathrm{C}$.

2)

Fully automatic adhesive and flux printer distributes adhesive or flux through profile form to the place where the SMD components are then mounted. Part of this process is also 3D optic inspection of the executed operation.

4)

PCBs with mounted SMD components are inspected and forwarded to reflow.

6)

Fully automatic line is ended by a cartridge which distributes picked and cured PCBs into holders.

7)

After the classic components are manually mounted by experienced workers.

8)

Manual placing of classical components is followed by soldering in soldering unit SEHO 8135-PCS which already supports "lead free" soldering technology. Thanks to IR pre-heating, this soldering unit allows operations on PCB together with temperature sensitive components on the upper side of PCB. Soldering unit is equipped by LW soldering jet and Delta jet. These jets allow a good quality.

10)
9)

After necessary semi-product testing on pin-testers (Pic.9) final assembling into enclosures is executed. The actual state of completion is monitored by bar codes during the whole production process (Pic.10).

11)

Semi-finished PCBs are tested by this tester. It replaces visual control. By using weight board, particular pins on bottom part are in contact. Functionality of SMD components and classical components is checked. Testing one PCB set takes about 20 s .

12)

In the end the products are fully printed by laser technology. Laser can burn from upper part) side of the product) and side part (front panel and terminals) printing one piece takes about 30 s .

स159

GLKO EP, s.r.o.

Palackeho 493 / 76901 Holesov, Vsetuly / Czech Republic
tel.: +420 573514221 | fax: +420 573514227 | elko@elkoep.com | www.elkoep.com
Published: 09/2013 / Modifications or amendments reserved/ © Copyright ELKO EP, s.r.o. / 1st edition

[^0]: Functions of PRM-91H, PRM-92H are identical with CRM-91H. See page 17.

[^1]: * Due to a large number of light source types, the maximum load depends on the internal construction of dimmable LEDs and ESL bulbs and their power factor $\cos \varphi$. The power factor of dimmable LEDs and ESL bulbs ranges from $\cos \varphi=0.95$ to 0.4. An approximate value of maximum load may be obtained by multiplying the load capacity of the dimmer by the power factor of the connected light source.

